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Chapter 1

Introduction

1.1 Overview

Complexity refers to the study of complex systems, of which there is
no uniformly accepted definition because, well, they are complex. Roughly
speaking, one says that a system is complex if it consists of many interacting
components (sub-units) and if it exhibits behaviour that is interesting but at
the same time not an obvious consequence of the known interaction among
the sub-units.

That sounds very vague, especially the use of words like ”interesting”
and ”obvious”, but it reflects an evolutionary perspective. For example, a
hundred years ago one might have described the study of how a substance
changes under heat (phase transitions) as a difficult and interesting problem
that required one to deal with systems with a large number of interacting
components (atoms). However by now very powerful tools, such as thermo-
dynamics and statistical mechancis, have been developed to deal with such
equilibrium systems leading to impressive quantitative agreement between
theory and experiment. Though such systems are not commonly referred
to as complex, they still provide valuable examples and concepts that have
been used in complexity studies.

Current interest has shifted to dynamical systems that are (generally)
out-of-equilibrium and thus highly non-linear. Such sytems actually
form the bulk of natural phenomena but for which the theoretical tools are
as yet poorly developed. Some examples of such complex systems or

phenomena are: The economy, the stock-market, the weather, ant

colonies, earthquakes, traffic jams, living organisms, ecosystems,

turbulence, epidemics, the immune system, river networks, land-
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8 CHAPTER 1. INTRODUCTION

slides, zebra stripes, sea-shell patterns, and heartbeats.

There is no single ”Theory of Complexity”, and it is unlikely that there
will ever be one. Rather one hopes that apparently different complex systems
can be grouped according to some common features that they have, so that
intuition and insight gained in studying one can be transferred to another.
Thus one of the main aims of complexity studies is to develop concepts,
principles and tools that allow one to describe features common to varied
complex systems. This leads to exciting interdisciplinary studies because
it turns out that ideas developed to handle complex systems in the physical
sciences have relevance also for systems in the biological and social sciences,
and vice versa!

What are some of the characteristics of complex systems? One often
quoted concept is that of emergence, which refers to the appearance of
laws, patterns or order through the cooperative effects of the sub-units of a
complex system. Thus the emergent phenomena or laws are not an intrinsic
property of the sub-units but rather something that is a property of the
system as a whole. Simple examples are those of ”temperature” and the
”gas laws”: At the individual microscopic level, none of those make any
sense, but they are features of a large system. More sophisticated examples
are of ”intelligence” and ”conciousness” – where do they come from ?

Sometimes one sees the phrase ”the whole is more than the sum of its
parts”, as a definition of emergence. This again reflects the non-linearity
of the system, whereby the output is not proportional to the input, small
changes can give rise to large effects, and the non-obvious results that can
be produced in a large system.

It is important to realise that the universe consists of many hierarchial
levels of complexity linked to each other. Each level has its own emergent
patterns and laws: As one goes down from galaxies, solar-systems, planets,
ecosystems, organisms, organs, cells, and atoms to quarks, different effective
laws emerge. However these laws would not be useful if there was not some
degree of universality, that is, one hopes that at each level of complexity
the same laws apply to varied systems rather than each following its own
tune. It is the apparent universality of the laws of physics, for example, that
makes the world comprehensible and gives us faith in its ultimate simplicity.
For example, at the atomic level weird quantum mechanics rules, but larger
systems are well described according to Newtonian laws, while engineers
often use empirical rules, and so do the social scientists.

It appears that nature has chosen to be economical (or is that an illusion
on our part?), so that the branching of trees or the air-passages in our lungs,
the shape of coastlines or clouds, the form of cauliflower or a mountain range,
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can be described by fractal geometry: Such shapes are self-similar over a
wide range of scales, thus implying scale-invariance, whose hallmark is the
appearance of ”power-laws”. In an equilibrium system scale-invariance nat-
urally appears at the critical point of a second-order phase transition,
such as that between the liquid and vapour phases of water. However nat-
ural systems are out-of-equilibrium and the common appearance of fractals
and power-laws in such systems is not as well understaood. Self-organised
criticality is the idea that many out-of-equilibrium systems naturally or-
ganise themselves, without external tuning or prodding, into a state which is
at the threshold between complete disorder and complete order: That is, the
system arranges itself into a critical state, and so displays scale-invariance
and power-laws.

Living systems are the most complex examples one can think of and it
is remarkable how such systems tend in their development towards greater
order, organisation and complexity, in contrast to the arrow of time dic-
tated by the Second Law of Thermodynamics. Of course there is no
conflict as the increase in disorder and entropy required by the Second Law
refers to closed equilibrium systems. Living systems are neither closed nor
in equilibrium, but rather use an inflow of energy to drive processes that
increase their order (thus decreasing their entropy), and dissipate heat and
other waste products that lead to an overall increase in entropy of the uni-
verse. One can say that organisms are dissipative structures, and have a
tendency towards self-organisation and pattern formation.

Ant-colonies are classic examples of self-organisation. Without a leader
(the queen is actually an egg-laying machine) orchestrating everything, and
without any of the ants having taken a course in engineering or social sci-
ence, each ant seems to do its own thing, following a few simple rules that
determines its interaction with its environment or its ant-mates. Yet, an
incredibly complex and organised society emerges from such an interaction
of the many ants. Ant-colonies display remarkable adaptation to changing
circumstances, using both feedback mechanisms and parallel analysis of
options. In recent years social and computer scientists have taken a keen
interest in studying ant colony behaviour in order to help solve problems in
their own fields.

Not all systems in nature appear organised or have some pattern to
them. Indeed many seem disorderly or ruled by random events. However
some of that randomness might only be on the surface. Chaos refers to
the property of some non-linear dynamical systems whereby they become
extremely sensitive to initial conditions and display long-term aperiodic be-
haviour that seems unpredictable. Though chaotic behaviour might appear
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essentially random, there is actually hidden order, apparent only in ”phase-
space” rather in ordinary space. Furthermore, many chaotic systems show
universality in their approach to chaos, giving one some predictive power.
Thus discovering that some random-like events are actually chaotic means
one has uncovered a simple determinstic basis for the system and so enabled
its understandability.

Often one encounters debates between reductionism and holism. Re-
ductionists like to get right down to the bottom, meaning they are interested
in the basic sub-units that make up the whole and believe that that is where
all that is of interest lies, the whole itself being just a complicated and un-
interesting consequence of the fundamental laws applied to a large system.
In short, knowing the microscopic explains all to the extreme reductionist.
Particle physicist are such, and in more recent times some molecular biolo-
gists involved with genomics are another example. While it is undoubtedly
true that knowledge of the microcomponents of a system and the basic in-
teractions among those is essential for us to progress, it is also a fact that
such knowledge by itself is insufficient to predict all the diversity and novelty
that can arise in a large system. (Take for example the task of predicting su-
perconductivity from Schrodinger’s equation – it is a problem that required
much effort after the fact–one knew what to look for. Similarly knowing
the whole genome code is not going to predict for us every feature of an
organism or a society).

The problem of precisely deducing the whole (of a large system) from its
parts is at least two-fold. Firstly it is a computational problem. Problems
with a large number of degrees of freedom are too complicated for exact
solutions, and for systems far from equilibrium, as complex systems are,
they are also not solvable by the probabilistic averaging methods used for
equilibrium systems. In recent years the growth of computer power at low
cost has produced the first tool that allows large systems to be simulated
or solved numerically. However this brings the second problem: Often one
does not have full knowledge of the fundamental dynamics, or the initial
conditions, or the problem is still too complicated to be handled directly
even by computers.

Often what is required is some guesswork or intuition to reduce the actual
problem to a simplermodel which can then be tested on a computer. Com-

puter simulations of simplified models let one test assumptions quickly,
and when the results appear similar to the real world one can take it as
plausible validity of the model and the assumptions. Qualitative similarities
of course do not constitute a proof, because other models with different as-
sumptions might give similar results, but at least the insight gained helps
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one to make further guesses and tests in a particular direction rather than
being lost in a mess of detail. In fact one of the most important lessons
computer simulations have taught us is that a large system with very sim-
ple local rules can give rise to collective behaviour of great complexity and
variety, showing on the one hand that complex phenomena need not require
complicated rules, but at the same time reminding us how difficult it is
(without computers) to deduce the emergent behaviour from the sub-units
and their interactions.

Thus studying the whole is as interesting as studying its parts, as novel
structures and emergent laws arise at each level of complexity. The con-
densed matter physicist studying superconductivity is not going to be re-
placed by the string theorist, and neither is the ecologist going to be become
obsolete because of the molecular geneticist. Explaining dynamic patterns,
order and emergent laws of a complex system by understanding the organ-
ising principles among the sub-units is what might be called holism, the
counterpoint to reductionism.

1.2 Examples

Let us briefly look at examples to illustrate some of the points above. These
are just apetisers, we will leave details for the main course.

1.2.1 Schooling of Fish

Try out the applet at Ref.[16]. Does it not look like a very realistic simulation
of fish swimming? The motion of each individual fish is not scripted right
from the beginning but rather each individual follows just three simple local
rules: cohesion, alignment and separation. Each of the rules is sensible from
the biological perspective and so the model is plausible. What is remarkable
of course is how the realistic and complicated collective behaviour emerges
from the few simple local rules. There is no leader and none of the individuals
has a global plan or perspective, (the motion is not orchestrated from the
beginning).

This example is an example of self-organisation. Other examples are the
herding behaviour of humans, say for example in the stock-market, and the
alignment of magnetic spins to form a ferromagnet. Many such examples
will be studied later.
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1.2.2 Bacterial Colonies

Look at the picture of a bacterial colony. It shows a branching structure,
which has the property that if one zooms into any region, that part looks
similar to the whole. The bacterial colony is an example of a random frac-
tal. Exact fractals appear the same at different magnification scales while
random fractals appear only statistically similar at different magnification
scales.

Fractals are ubiquitous in Nature. Another example is the branching
network of air-passages in the human lung. The advantages of such a struc-
ture are an increase in surface to volume ratio which maximises functional
efficiency while minimising material and space costs.

The word ”fractal” itself means more than just self-similarity at different
scales. It also implies a fractal dimension which we will discuss later.

1.2.3 Forest Fires

Look at the figures which show the number of fires as a function of the area
burnt, in different regions of the United States of America and Australia.
On a log-log plot one sees that the data is well approximated by straight
lines, meaning that the number of fires as a function of area is a power law:

N ∝ A−α (1.1)

with α ∼ 1.3 − 1.5. It is important to note that the straight line fits are
for a wide range of the data (one can always fit a straight line to a small
range), and for different geographical regions. This suggests a universality
in the phenomena that requires a explanation.

Power laws are observed in many other natural phenomena such as earth-
quakes and solar flare activity. It has been suggested that these phenomena
are examples of self-organised criticality, that is, the systems are attracted
to a state which is between that of total order and total disorder. The word
”critical” is borrowed from well-studied thermal equilibrium systems that
undergo second-order phase transitions at critical points and display power
laws. However in the case of forest fires (or earthquakes etc.), the systems
are far from equilibrium and the power-law behaviour, that is criticality,
does not require fine-tuning — it is self-organised.

Given the complexity fo the actual systems, it is impossible at present
to study those systems from first principles. Rather one studies simplified
models to check whether power-laws emerge naturally.
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Power laws imply a self-similarity at different scales, so it is natural
to suppose that self-organised criticality might be the common dynamical
mechanism behind the wide occurence of fractal structures in nature.

Power laws also appear in social contexts, for example the frequency of
occurence of words in a literary text, and the magnitude of wars. We will
come back to these examples later in the course.

1.2.4 The Double Pendulum

Most of you are familiar with the simple pendulum: A small heavy object
suspended at the end of a thin light string and set into oscillation. For
small oscillations (and in the absence of air friction) the motion is that of a
”harmonic oscillator”: That is, periodic motion with a period proportional
to the sqaure-root of the length of the pendulum.

For larger oscillations, the motion of the simple pendulum is still periodic
but no longer given by a simple formula. Indeed, for large oscillations the
equations governing the motion fo the pendulum are non-linear in contrast
to the linear equations for small oscillations. However while the equations
are nonlinear, the motion is still regular and predictable.

A double pendulum consists of two simple pendulums in tandem: One
attaches a single pendulum to the end of another! The equations of otion
are again non-linear for large oscillations but now the motion becomes quite
irregular and very sensitive to the initial conditions. This kind of behaviour
is the hallmark of chaos. See the simulation of the double pendulum in the
references.

Chaos occurs in many nonlinear systems and it implies that even systems
with a few degrees of freedom, and hence naively simple, can show compli-
cated behaviour which is essentially unpredictable on long time scales. How-
ever chaos is very different from randomnes: The former arises in perfectly
deterministic systems while the later is intrinsically nondeterministic, and
the distinction between the two at the practical level can be seen by looking
at the ”phase space” of the system, as we shall see later.

1.2.5 The Leopard Spots

How did the spots on a leopard, the stripes of the zebra or tiger, or the
patterns on sea-shells, form? Is there some simpel general framework which
can explain these beautiful patterns? Yes, these patterns are called Turing
structures, named after the Bristish mathematician who came up with a
model to explain such structures.
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Some chemical systems, when maintained far from equilibrium display
oscillatory behaviour. When the chemical waves of such a reaction are al-
lowed to diffuse through a medium at different rates andthe resulting pattern
stabilised, one obtains Turing structures.

Later in this course we will look at many other interesting far from
equilibrium systems, some of them showing cyclical behaviour.

1.3 Summary

The aim of the course USSC3001: Complexity is two fold:

(1) To provide you, the student, with a relatively gentle introduction
to the concepts mentioned above so that you can continue on your own in
greater depth if you so desire.

(2) To broaden your horizons by introducing you to the interdisciplinary
nature of complex systems studies, which exemplifies in a concrete sense the
often quoted ”unity of knowledge”.

As in all popular fields, one often finds in descriptions of ”Complex-
ity” misleading or hyped statements, and metaphorical deviations. So some
caution and cynicism is required in filtering the raw data from a search,
especially over the Internet.

In conclusion, explore the exercises below and hope for some enlighten-
ment.

1.4 Exercises

1. Read as many of the articles in Refs[8-11] and then
(a) Engage in a critical discussion with your colleagues,
(b) Next, reread the Introduction and try to identify the keywords
highlighted there with those in the above mentioned articles.

2. Try to find examples from your daily life or systems around you that
illustrate the keywords used in the introduction.

3. Do you think there are other characteristics of complex systems that
have not been mentioned above ? You might want to search for exam-
ples in Refs.[6-7].

4. To get some ideas for your project,
(a) Read the guidelines and some suggestions in the course outline on
the course webpage.
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(b) For more ideas, look at Refs.[12-15], the other references mentioned
below, some links on the ”Useful Web Resouces” page of the coures
webpage, and also the books mentioned in the references. The books
are available in the NUS library and some even in the National Library
branches.
(c) Come discuss your potential project ideas with me and ask for
suggestions. (Remember: Your project must be approved by

me before you start!)
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Chapter 2

Fractals: Geometrical

Complexity from Simple

rules

How does one describe the skyline of a mountain range, the outline of a
tree or a coastline, or the spatial structure of a snowflake? A description
in terms of regular geometric shapes of Euclidean geometry, formed from
straight lines and smooth curves, appears inadequate to capture the intricate
structure of such objects. Benoit Mandelbrot introduced the word fractal

to describe such ”shapes made of parts similar to the whole in some way”.
For a start we may adopt the following definition.

Definition of Fractal (informal): A fractal is a shape that appears
self-similar on multiple spatial scales, that is, any piece of it looks like the
whole after a change of scale (magnification).

17
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Figure 2.1 A fern.

Figure from The Computational Beauty of Nature: Computer Explorations of Fra
tals, Chaos, Complex Systems, and Adaptation. Copyright



 1998{2000 by

Gary William Flake. All rights reserved. Permission granted for edu
ational, s
holarly, and personal use provided that this noti
e remains inta
t and unaltered. No

part of this work may be reprodu
ed for 
ommer
ial purposes without prior written permission from the MIT Press.

The technical term that describes self-similarity of shapes under change
of observation scale is scale-invariance. Systems that are scale-invariant
do not have any characteristic length, that is a typical or mean length. For
example, if one observes an aerial photograph of a coastline, it is difficult
to guess the actual size of the features unless some man-made objects are
also visible. This is because, as mentioned above, coastlines are self-similar
on a wide range of scales, or approximately scale-invariant, while man-made
products have a natural characteristic length: A car has a characteristic
length of about 5 m, a house about 10m and Man has a characteristic
length of 2m. Objects that have a characteristic length scale look different
at different magnifications: for example, the fingers, the arm, and the torso
of a human body are not self-similar shapes.
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2.1 Mathematical Fractals

Natural fractals are self-similar only over a limited range. Also sometimes
the self-similarity is only statistical rather than exact. In this section we will
study mathematical fractals that are self-similar at all scales and are exact.
Such fractals are generated by iteration, that is, by repeating a procedure a
number of times. The number of times (steps) the procedure is performed
can be kept track of by an integer k.

2.1.1 The Koch Curve and Snowflake

This fractal is generated by iteration as follows. The initiator, the initial or
k = 0 step, is a unit line element. The first step, k = 1, called the generator,
involves removing the middle one-third of the unit line and replacing it with
two line segments each one-third in length as shown in the figure. The figure
now contains four equal line segments. In the next step, k = 2, each of the
four line segments is replaced by the (scaled) generator, leading to a figure
with 16 segments. The procedure is repeated endlessly, k → ∞, to generate
the Koch curve.

Step 1 Step 2

Step 3 Step 4

Figure 2.2 The �rst few steps in 
onstru
ting the Ko
h 
urve

Figure from The Computational Beauty of Nature: Computer Explorations of Fra
tals, Chaos, Complex Systems, and Adaptation. Copyright
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Note that the Koch curve, with its exact self-similarity at all scales, is
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obtained only after an infinite number of iterations, at the k = ∞ step. The
figures leading up to the Koch curve are called prefractals and at large k
these already look like the final fractal because of the finite resolution of our
eyes.

How long is the Koch curve? Clearly at each step in its generation,
the length increases by a factor of 4/3 as a line segment of one-third unit
is replaced by two of equal length. Therefore the length of the prefractals
diverges as the number of steps increases, leading to an infinite length for
the Koch curve! The reason for this is of course obvious since the Koch
curve is not smooth but infinitely ’kinky’ (In fact the curve consists entirely
of corners !)

Three Koch curves can be fitted together to form a Koch snowflake.
(Try it. Does the result look like a real snowflake ?) Alternatively, one can
start with an equilateral triangle and apply the generator of the Koch curve
repeatedly to each line segment. Again, the Koch snowflake has an infinite
length, but its area is bounded by that of the circle that circumscribes the
original triangle.

The Koch snowflake, with its infinite length but finite area is an unusual
object from the viewpoint of Euclidean geometry where objects occupy finite
lengths, areas and volume in finite space. In order to characterize such
objects we have to generalize our notion of dimension.

2.2 Dimensions

We live in a three-dimensional world: That is, we need three coordinates
to specify the location of any point. The coordinate system we use locally
might be the orthogonal (right-angular) Cartesian grid with x-y-z axes, or
more practically for a global description, a location of a point in terms of
latitude, longitude and altitude. When we restrict our attention to a subset
of the world we can often make do with a description in terms of fewer
coordinates. For example, a point on the surface of a table can be described
in terms of two coordinates.

Sometimes a description in terms of fewer coordinates is a useful and
economical approximation. Consider a ball of string lying on top of a table.
From a very large distance it might appear to someone as a point object,
its location in space given by three coordinates: Far away it is a point and
so zero dimensional. When one approaches closer it will look disc-like and
two-dimensional. Even closer up the three dimensional structure of the ball
will become apparent. Finally one realizes that the ball is made of string, a
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one-dimensional object, and so any point on the ball of string can be located
by tracing out a single coordinate along the string!

In the example above we have used two definitions of dimensions. Firstly
there is the Euclidean dimension (De): The number of coordinates required
to specify an object. Secondly there is the Topological dimension (Dt),
which, roughly speaking, is a measure of the intrinsic dimension of the ob-
ject. For example, a thin string has topological dimension one but when it
is spread out in space, as in the ball, it has a Euclidean dimension of three.

Topology is often called ”rubber” geometry because it deals only with the
qualitative shape of an object. If the object is imagined to be made of rubber
then by stretching (but without tearing) it can be deformed into another
topologically equivalent object. Thus, a curve of any shape is topologically
equivalent to a straight line, and has a topological dimension of one.

The Euclidean and topological dimensions are always integral. For char-
acterizing fractals it is useful to introduce another definition called the sim-
ilarity dimension which is often fractional. To motivate this definition, con-
sider first a unit Euclidean line, square and cube, each divided into N equal
self-similar parts of linear dimension s.

For the line, since Ns = 1, each smaller part has a length s = 1/N . For
the square, Ns2 = 1, so each smaller square has length s = 1/N0.5, while
since Ns3 = 1 for the cube, each smaller cube has length s = 1/N1/3. The
values of s above are called scale factors.

Definition of Similarity Dimension: If an object of unit size contains
N self-similar copies of itself of size s, then its similarity dimension Ds is
determined by the equation

NsDs = 1 . (2.1)

For the Euclidean figures above, Ds = 1 for the line, Ds = 2 for the
square and Ds = 3 for the cube. These numbers are identical to the topo-
logical and Euclidean Dimensions for these figures. Let us rewrite the above
equation in the form

Ds =
log(N)

log(1/s)
. (2.2)

Now we can find the similarity dimension of the Koch curve. At each
observation scale, the curve contains 4 self-similar copies of itself of size
s = 1/3, so
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Ds =
log(4)

log(3)
= 1.2618... (2.3)

Thus the similarity dimension of a Koch curve is larger than its topo-
logical dimension which is one, but smaller than its Euclidean dimension of
two. Since Ds for a Koch curve is larger than that for a line but smaller
than that for area, one can roughly say that the Koch curve is more than
a line but not quite a plane. We are now in a position to appreciate the
following formal definition of a fractal:

Definition of Fractal (formal): A fractal is an object whose similarity
dimension is larger than its topological dimension.

An equivalent way of thinking about equation (4.18) and fractal dimen-
sions is as follows. Imagine measuring everthing relative to the length of a
measuring stick. So if a smooth curve can be covered using N units of that
stick of measure s, the length of the curve can be estimated as Ns. If a stick
half in length, s/2, is used instead, one would need 2N units to cover the
same smooth curve, and the final length of the curve will come out to be
the same. For a fractal curve the above is no longer true. As the size of the
measuring stick is changed, the total length of the curve changes, as we saw
for the Koch curve. Historically this fact was observed by Richardson: He
found that the length of some borders between countries seemed to increase
when the length of the measuring instrument was reduced. Can you explain
in physical terms what is happening in this case ?

Here is another example of a fractal. Mandelbrot discovered that noise
in telephone lines is clustered and can be modeled as a Cantor set. The
Cantor set is generated as follows: The initiator is a unit line element. The
generator involves removing the middle one-third of the unit line. After this
first step the figure consists of two line segments, each one-third in length.
The procedure is repeated endlessly, each time removing the middle one-
third of the remaining line segments.
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Figure 2.3a The �rst few steps in 
onstru
ting the Cantor set

Figure from The Computational Beauty of Nature: Computer Explorations of Fra
tals, Chaos, Complex Systems, and Adaptation. Copyright
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Figure 2.3b The Cantor set with points labeled

Figure from The Computational Beauty of Nature: Computer Explorations of Fra
tals, Chaos, Complex Systems, and Adaptation. Copyright
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The Cantor set has an infinite number of points but it is of width zero
(technically one says it is of measure zero). The Cantor set is in some sense
the opposite of the Koch curve: In the generation of the Cantor set, at each
step (prefractal) the line segment was made shorter by one-third while in the
Koch curve it was made longer by one-third. Therefore one would expect
that the Cantor set is in fact ’less than a line’, just as the Koch curve was
considered ’more than a line’. This is confirmed by computing its similarity
dimension. What are the topological, Euclidean and similarity dimensions
of the Cantor set?

2.3 Random Fractals

Natural objects do not contain identical scaled down copies within them-
selves and so are not exact fractals as described above. However, natural
objects can often be classified as random fractals, meaning that each smaller
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part of it is statistically similar to the whole. Random fractals can be gen-
erated by modifying the iteration process of the last section to include a
probabilistic element. Consider the generation of a random Koch curve.
The initiator and generator are as before, but in the following steps (k = 2
onwards), the prefractals are obtained by replacing each line segment with
the generator in such a way that the triangle of the generator points ran-
domly (for example, determined by a coin toss) to either side of the original
line. The figure for the final fractal shape looks very irregular compared to
the exact Koch curve but is closer to the shape of natural objects such as
coastlines.

Just as for exact fractals, one can introduce a dimension to character-
ize random fractals. One example is the box counting dimension. In this
method, space is divided into equal sized cubes (or squares if the figure lies
on a plane) of linear dimension r. One then counts the number of cells, N(r)
that are needed to cover the given shape. If

N(r) ∝ r−Db (2.4)

as the length r is changed, one says that the distribution of points is Db-
dimensional. This definition obviously agrees with the Euclidean dimension
for straight lines and planes but gives fractional values for more complicated
shapes such as coastlines. Note that the equation above is of the same
form as that which comes from the definition of the self-similarity dimension
mentioned above.

2.4 Occurrence and uses of Fractals

Consider the Amazon river system. The box-counting method can be used
to determine its fractal dimension, giving Db = 1.85. By comparison the
fractal dimension of the Nile river is about 1.4 [Takayasu, Section, 2.1.2].

The branching of a tree looks like that of a river and its fractal dimension
lies between 1.3 and 1.8, with a mean of 1.5. [D. Morse, et. Al., Nature,
314 (1985) 731].

The shape of lightning discharges is similar to that of rivers. The fractal
dimension in this case is about 1.7 [L. Niemeyer, et.al. Phys. Rev. Lett.,
52 (1984), 1033].

Consider the diameter distribution of blood vessels in a bat’s wings. If
N(r) Is the number of vessels thicker than r, then N(r) ∝ r−2.3, [Takayasu,
Sect.2.2.1].
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Given a time-varying signal, one may consider its power spectrum, that
is, the Fourier transform of the intensity. The power spectrum indicates the
relative magnitude of different frequency components in the signal. Empiri-
cally it is found that fluctuations (or noise) in many man-made and natural
systems have a power spectrum of the form f−a where a ∼ 1. This is
generically referred to as a ”1/f” law.

Note that if a = 0 then all frequencies would have the same magnitude
(the fluctuations are random) and one has ’white’ noise. For a close to
one, which is what is observed, the lower frequencies dominate and one has
”pink noise”. The 1/f noise has been observed in electrical circuits, voltage
fluctuation of nerve cells, heart beats and even in music. This universal
occurrence, which cannot be due to random fluctuations that give rise to
white noise, demands a simple explanation but there is currently none (see
however the later chapter on self-organised criticality). The 1/f noise is of
course fractal because of its self-similarity. Finally, if a ≥ 2 one has ”brown
noise” which for audio signals sounds dull and is not observed in nature.
Thus it seems that the naturally occuring and interesting ”1/f noise” is
poised between the randomness of white noise and the dullness of brown
noise.

Look at the pictures of branching air passages in the lung, the branching
of blood vessels in the human body, or the folds on the surface of the brain.

(a) (b) (
)

Figure 2.5 Naturally o

urring fra
tals in the human body: (a) brain, (b) lungs, (
)

kidney

Figure from The Computational Beauty of Nature: Computer Explorations of Fra
tals, Chaos, Complex Systems, and Adaptation. Copyright
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Why should nature design such fractal structure ? Recall from the ex-
ample of the Koch curve that one can accomodate long lengths in small
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areas. Thus nature apparently maximises functional efficiency while using
minimum space by adopting fractal structures.

Fractals images have been used for image creation in science-fiction
movies (e.g. Star Wars) and also for data compression (If you are interested,
check out the work of Lindenmayer and Barnsley and explore the related
fractals using the FRACTINT software). In case you have not guessed it
yet, Fig.(2.1) is not an image of a real fern but a computer simulation! Here
is another simulation that looks natural:

Figure 2.6 Fra
tal mountain generated by xmountains (an X Windows program writ-

ten by Steven Booth)

Figure from The Computational Beauty of Nature: Computer Explorations of Fra
tals, Chaos, Complex Systems, and Adaptation. Copyright
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The graphs shown below plot the actual S&P 500 stock index for one
year, five year, and ten year spans. Do the time-series look self-similar to
you ?
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Figure 2.7 The S&P 500 sto
k index shown on various time s
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Figure from The Computational Beauty of Nature: Computer Explorations of Fra
tals, Chaos, Complex Systems, and Adaptation. Copyright
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Now look at Mandelbrot’s paper on finance [Mandelbrot, Scientific Amer-
ican Feb 1999, pg.73] . Some of the figures there are of real data but some
have been artificially generated using fractal concepts. Can you tell them
apart? These last two examples show that time series in finance are gen-
erated by complicated processes that are apparently self-similar on many
scales.
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2.5 Dynamical generation of some random frac-

tals: Diffusion Limited Aggregation

Some random fractals, such as the clusters describing a bacterial colony, can
be generated by a physically motivated model called ’diffusion limited aggre-
gation’ (DLA). Consider for simplicity the formation of such a cluster in the
plane, with the initial (seed) particle located at the origin. Other particles
are then released far from the origin, at random locations, and allowed to
diffuse: Mathematically this is done using an algorithm such as a ’random
walk’ to simulate the diffusion process. When the diffusing particle encoun-
ters the seed particle it is made to stick to it. The process is repeated with
other diffusing particles, leading to the formation of a cluster. As the cluster
forms, there is a greater probability for particles to stick to the ends than
to penetrate the interior. Hence this leads to the formation of a branch-like
structure emanating from the origin.
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Figure 2.4 An example of growth from di�usion limited aggregation

Figure from The Computational Beauty of Nature: Computer Explorations of Fra
tals, Chaos, Complex Systems, and Adaptation. Copyright
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Some other examples of DLA are in the growth of crystals (e.g. snowflakes)
and coral reefs. (Note: A ’random walk’, colloquially referred to as the
’drunken man’s walk’ is a path generated by a random process. Consider a
two dimensional random walk starting at the origin. The location of the the
next step is generated, for example, by two random numbers which give re-
spectively the direction (angle) and length of the walk. The random process
is repeated at the following time intervals. See the Exercises.)



30CHAPTER 2. FRACTALS: GEOMETRICAL COMPLEXITY FROM SIMPLERULES

Another dynamical ’explanation’ of the ubiquitous occurrence of fractals
and power laws in nature is the idea of ’self-organised criticality’ that we
will discuss later in the course.

2.6 Scaling Laws in Biology

Several power laws are known in biology. For example, it had been known
for decades that the metabolic rate of an organism, B, scaled with the mass
of the organism, M , like B ∝ M3/4. This relation was found to be valid
over many orders of magnitude, from a tiny mouse to an elephant. Not only
was the universality of the exponent a surprise, so was its value. Different
naive arguments would have suggested values of 1 or 2/3. Although some
suggestions were made over the years to explain the exponent value of 3/4,
these were restricted to certain animal types. A general model was presented
only quite recently by Brown, Enquist and West [10].

In the BEW model, three assumptions (supported to varying degree by
empirical evidence) were made concerning the transport network of nutrients
in an organism: (1) The network is a volume-filling hierarchical branching
system (fractal), (2) The smallest branch is of the same size in different
animals, (3) The energy required to transport materials through the network
is to be minimised.

The remarkable simplicity of the model, and its explanation of the 3/4
exponent makes it very attractive. Several follow up investigations have
been done, see 11. It is interesting to note that the numerical value of 3/4
arises in the model through the expression d

d+1 where d = 3 is the dimension
of space 12.

2.7 Fractals and Art

Jackson Pollock was an abstract painter with an unusual (even by abstract
standards!) style: His paintings were huge, typically 2-4 metres each side,
and he painted by dripping or streaking paint from a can using a large brush
or stick. His paintings have a “natural” look to them, similar to undergrowth
in a forest or a thick bush, and this might be the reason they appear pleasing
to many.

Richard Taylor analysed Pollock’s paintings, concluding that they were
fractal (!), with a dimension D that increased from close to 1 to about 1.72
during the evolution of the artists technique.



2.8. SUMMARY 31

2.8 Summary

Fractals are shapes that are self-similar on multiple scales (spatial or tem-
poral), and have (in general) fractional dimensions. Natural fractals are of
course self-similar only over a limited range, and the similarity is often sta-
tistical rather than exact. Nature apparently chooses fractal structures to
optimize functional efficiency given limited resources. (An interesting recent
article is Ref[5].

Physical growth mechanisms, such as DLA, are reasonable explanations
for some natural fractals, while for fractals in biological systems some al-
gorithms have been proposed (such as those of Lindenmeyer and Barnsley)
that give realistic pictures.

Though natural fractals have intricate structures, it is remarkable that
one is able to ’explain’, at least qualitatively, the complex geometry of nature
using computer simulation of models obeying simple rules. Thus in this case
one might say that the emergence of complex patterns and structures can
be understood as arising from simple underlying causes. However note that
to capture the depth of self-similarity, one has to iterate the algorithms over
many steps, and it is often not possible to guess what the final structure
will look like until the numerous steps have been performed.

Self-similarity implies that a system is scale-invariant, or equivalently, it
means the absence of a charactersitic length scale. Scale-invariance will be
revisited when we study phase transitions and self-organised criticality.

Look out for fractals later in the course when we study chaos, phase
transitions and self-organised criticality. In the meantime, read about some
technological apllications of fractals at Ref.[??].

2.9 Exercises

1. Explain why fractals in nature are self-similar only over a limited
range. Is there an upper limit or lower limit or both?

2. Many movies use miniature models in their special effects. Discuss
how the human brain is tricked into thinking that those models are
life sized and how this relates to the concept of characteristic length
and/or self-similarity.

3. Look at natural objects (or pictures of them) that are frequently re-
ferred to as fractal. Do you notice the self-similarity on multiple length
scales?
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4. Can you draw a unique tangent at any point of a Koch curve? Why
not? What is the mathematical terminology to describe such curves?

5. Suppose the initiator of the Koch curve was 1cm long. Approximately
how long would the Koch curve be after 100 iterations? If the curve
was a piece of thread that could be stretched to its full length, could
you use it to tie the Earth to its Moon ?

6. Take a piece of paper 2cm by 2cm. Make a hole in it big enough for
you to push a glass of water through it. (Hint: This question is not
really about fractals but is used to illustrate that you can have long
lengths in small areas as in the Koch snowflake).

7. What is the area of the Koch snowflake if the initiator was an equilat-
eral triangle of unit length on each side?

8. What are the topological and Euclidean dimensions of the Koch curve?

9. Starting from the definition of self-similarity dimension, derive the
explicit expression for the self-similarity dimension of a fractal. What
is the base of logarithms used in the equation?

10. Calculate the self-similarity dimensions of the Koch curve using the
scales s = 1/9 and s = 1/27.

11. (a) Give examples of objects that are self-similar over a wide range of
scale but which are not fractals.
(b) Give an example of an object which is a fractal but does not have
fractional dimensions.

12. Show that the length of the initiator that remains once a Cantor set
is formed is zero. Convince yourself that the Cantor set is a fractal,
by showing that it is self-similar and also by computing its similarity
dimensions and comparing that with its Euclidean and topological
dimensions.

13. (a) Determine the area and perimeter of the Sierpinski carpet.
(b) Determine the volume and area of the Menger sponge and compare
the result with that of a real sponge.
(c) Determine the topological, Euclidean and self-similar dimensions of
the quadratic Koch curve (Minkowski sausage), the Sierpinski carpet,
and the Menger Sponge.
(d) In what way are the Cantor set, Sierpisnki carpet and Menger
sponge related ?
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14. Search for two examples of fractals in your environment that are almost
exact, and two examples of those that are random.

15. Do you think the fractal (self-similarity) dimension of a two-dimensional
projection of a tree is more or less than 2? Why?

16. Look at the pictures of branching air passages in the lung, the branch-
ing of blood vessels in the human body, or the folds on the surface of
the brain.
(a) Suggest reasons why nature would have designed such fractal struc-
tures, that is, what is to be gained by adopting such a structure? Also
suggest reasons for the fractal structures of trees. (Hint: See exercise
(13) above).
(b) Where are the instructions for growth in biological systems en-
coded?

17. Measure the fractal dimension of a long coastline given in your Atlas
using the box-counting method.

18. The coastline in the above exercise may be approximated by a set of
straight lines each of fixed length, and its total length estimated by the
sum (the “structured walk technique”). Determine the number N(r)
of straight-line segments of length r that are required to approximate
the figure. Plot the results on a log-log plot and determine the fractal
dimension of the coastline by this method. Compare your result with
the box-counting method.

19. There exist many online web simulations of random walks. Explore
some of the one and two dimensional versions. See for example Ref.[7].

20. Explore the DLA simulation at Ref.[8]

21. Optional: Look at the graphs in Mandelbrots paper on finance [Man-
delbrot, Scientific American Feb 1999, pg.73]. Can you make out which
of the graphs represent real data and which fractal simulations? Can
one make money out of this?

22. Widen your horizons by browsing through the articles in Refs[5, 6].
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Chapter 3

Chaos

I accept chaos. I am not sure that it accepts me.
Bob Dylan

3.1 Introduction

When the meteorologist Edward Lorenz was studying a simplified model of
the weather he discovered that tiny differences in the initial conditions led
rapidly to very different final results. This came as a surprise to everyone as
it was always assumed that small errors in any dynamical system would lead
to small corrections. Indeed in practice we never have the exact information
about initial conditions and we always deal in approximations of some sort.
The sensitive dependence on initial conditions came to be called the butterfly
effect : A butterfly flapping its wings in Aruba might completely change the
weather in Bali!

The fact that a completely deterministic system could lead to results
that were essentially unpredictable came to be called chaos. A necessary
condition for chaos is that the equations for the system are non-linear as
errors in linear systems remain small if they were initially small. As most of
the dynamical systems in real life are described by nonlinear equations, it
is expected that chaos will be commonplace. However one must remember
that even for the simple Lorenz model chaos appears only for some values
of the control parameter (a free parameter that occurs in the equations),
and so real life nonlinear systems might not always be chaotic. That is,
nonlinearity is not a sufficient condition for chaos.

35
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3.2 Dynamical Systems and Iterative Maps

Whereas a real dynamical system, such as the motion of the planets, is
described by differential equations and continuous time, it is often convenient
to consider simpler mathematical models, called difference equations, where
the system evolves through a set of discrete time steps. The simplest models
of difference equations are the iterative maps because the future value of
some variable at time t = (n + 1) depends only on its value at the present
time t = n (here n is an integer). An iterative map is of the form

xn+1 = f(xn) , (3.1)

where f(x) is called the mapping function. Thus starting with some initial
value x0 of the variable, its next value x1 is obtained by evaluating f(x0),
which itself becomes the input to evaluate x2 and so on. Thus the time-
evolution of the discrete variable x is obtained by repeated iteration of the
mapping function. Note that this mathematical iteration corresponds in
physical terms to a feedback process.

3.3 A Simple Example of an Iterative Map

3.3.1 An Intuitive Analysis

Consider the map

xn+1 = x2n , (3.2)

which corresponds to the mapping function f(x) = x2. It is easy to guess, or
check with a calculator, what happens as one repeatedly squares a number
x0 ≥ 0: If the initial value is greater than 1, repeated iterations give values
that increase without bound. On the other hand, an initial value of exactly
1 remains at 1, while any intial value less than 1 will converge to 0.

If we restrict our discussion to finite values, then this example has two
fixed points, one at x∗ = 0 and another at x∗ = 1. If one starts the
iteration at exactly any of these two values one remains there, and so the
name ’fixed points’. The fixed point at the origin is called stable because
a small deviation (perturbation) from an intial value of zero causes future
iterations to be attracted back to the origin. One says that the basin of
attraction, (that is the range of values that are attracted to a fixed point),
of the fixed point at the origin is [0, 1). By contrast the fixed point at x∗ = 1
is unstable: any small perturbation away from that value give future values
that move further away from that point.
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A mechanical analogy of the two fixed points, stable and unstable, is
a ball lying at the bottom of a valley and one lying on a hill top. Both
positions of the ball are points of static equilibrium, but one position is
clearly stable while the other not. Furthermore the stability of the ball at
the bottom of the valley is limited to perturbations that do not cause the
ball to go over a nearby peak, and hence in general the basin of attraction
of a point of stable equilibrium is of finite extent.

3.3.2 A Graphical Analysis

It is useful in general to have a geometrical picture, called a state space

or phase space plot, which shows how the next iterate xn+1 depends on
the current value xn. This is done as follows. First draw the curve y = f(x)
to represent the right hand side of Eq.(3.1) . On the same graph plot the
line y = x to represent the iteration process xn+1 = f(xn). Fig(3.1a) illus-
trates the method for the case f(x) = x2. Starting with any x0, for example
x0 = 0.8, the next value x1 = f(x0) is obtained by drawing a vertical line
from x0 = 0.8 to the curve y = x2. Since x1 = f(x0) is now needed as
the next input to the iterative map, graphically this is achieved by moving
horizontally to the y = x line and then moving vertically to the ’square’
curve to give x2. The procedure is repeated to produce a generic ’cobweb’
diagram. For this example Fig(3.1a) shows a step-wise approach to the fixed
point at the origin.
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Fig.3.1a: Geometric representation of the Square Map
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It is easy to see from this diagram that for the example considered, the
origin is an attractive (stable) fixed point with a basin of attraction [0, 1),
while as Fig(3.1b) shows, the point x∗ = 1 is an unstable fixed point.

Fig.3.1b: Geometric representation of the Square Map
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Since the fixed points above correspond to a situation where the future
values of x at each time step remain the same, they are called period-one
fixed points. This terminology is introduced as we will later generalise the
concept of fixed points. Since period-one fixed points correspond to solutions
of xn+1 = xn, graphically these can be found from the intersection of the
mapping function y = f(x) with the staright line y = x. For the case
f(x) = x2, the two intersections are at the origin and at x = 1 as we already
know.

3.3.3 The Analytical Approach

Analytically, period one fixed points are determined by solving the equation
xn+1 = xn. Denoting the solution as x∗ and using Eq.(3.1), one obtains

x∗ = f(x∗) . (3.3)

For the mapping function f(x) = x2 the solutions are x∗ = 0, 1 as expected.
The stability of fixed points can also be analysed analytically. Consider

a nearby point xn = x∗ + ǫ with ǫ a small parameter. Then using a Taylor
expansion and to leading order in ǫ, one obtains

xn+1 = f(x∗ + ǫ) (3.4)

= f(x∗) + ǫ
df

dx
|x∗ (3.5)

= x∗ + (xn − x∗)
df

dx
|x∗ , (3.6)

and hence
|xn+1 − x∗| = |xn − x∗| |f ′(x∗)| . (3.7)

Therefore if |f ′(x∗)| < 1 an iteration brings the starting point xn closer
to the fixed point, implying that the fixed point is stable, at least locally.
In other words, a period-one fixed point is stable if the slope of the mapping
function at that point has magnitude less than one. Similarly, if the slope
of the mapping function at a period-one fixed point is greater than one,
the point is unstable. Finally, if the slope is exactly equal to one the fixed
point is locally neutral, meaning that small perturbations lead to another
equilibrium position ( the mechanical analogy here is that of a ball lying on
a flat surface).

For the mapping function f(x) = x2, we had determined a fixed point at
x∗ = 0 and another at x∗ = 1. Since f ′(0) = 0, this implies that the origin is
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a stable fixed point, while since f ′(1) = 2 the other fixed point is unstable.
These results of course agree with the earlier qualitative discussion.

3.4 A Discrete Model of Population Growth

Difference equations and iterative maps occur naturally in mathematical
biology. For example, an important problem is how the population size of
a particular species varies from one generation to another. Let Pn be the
population of a species at time n (corresponding say to the n-th generation),
and Pn+1 the population at time n+1. Then the change in population size
during the time interval is given in the simplest model of population growth
by

Pn+1 − Pn = kPn , (3.8)

where k is the growth rate. That is, the population is assumed to increase
in one time interval by an amount proportional to its value at the beginning
of that interval. However, this would imply a population that increases
without bound as time increases. A more realistic model is obtained if the
rate of growth is not a constant but depends on Pn itself in such a way that
it decreases when the population becomes too large and the species runs out
of food and/or space. Therefore we put,

k = b(c− Pn) , (3.9)

where b and c are positive constants. Clearly when Pn = c, k = 0 and the
population has reached a maximum value. Substituting equation (3.9) into
(3.8) gives the Verhulst model (also associated with the biologist Robert
May),

Pn+1 = Pn + bcPn − bP 2
n . (3.10)

The last term in (3.10) is nonlinear and in addition it provides negative
feedback as compared to the positive feedback due to the second term. By
a change of variables the equation can be written in the simplified and
conventional form

xn+1 = 4rxn(1− xn) , (3.11)

where the symbol P has been replaced with a new variable x that can
be interpreted as the fractional population. Equation (3.11) is known as
the logistic map and the constant r is called the control parameter ( here
interpreted as the reproduction rate). We wish to study the properties of
the logistic map as it is evolved forward in time. This evolution is obtained
simply by repeated interation of an intial value x0 and the sequence of values
taken by the successive x is called an orbit.
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3.4.1 Varying the control parameter in the logistic map

Let us study how the orbits of the logistic map depend on the control pa-
rameter that is restricted to 0 ≤ r ≤ 1. That range of r is selected because
it keeps all future values of x between 0 and 1 if initially it was between
those values.

If r = 0 then the population does not reproduce at all and becomes im-
mediately extinct at the next time step. For 0 < r ≤ 1/4, it is easy to see
that irrespective of the initial population, the population will monotonically
decrease as time progresses, and will eventually become extinct. That is,
the origin is the only fixed point for 0 ≤ r ≤ 1/4 and it is attractive (stable)
for all x0. Figure(3.2) shows the state plot for r = 0.2 and x0 = 0.6.

Fig.3.2: Geometric representation: Logistic Map For r=0.2
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Consider now a larger value of r, say r = 0.7. For an intial value x0 = 0.1,
the corresponding time series is shown in Figure (3.3a). The initial behaviour
shown in that figure is called the transient orbit, while the final sequence to
which the orbit tends to is called the post-transient orbit. It is the post-

transient orbit which is of interest. As the state-space plot in Fig(3.3b)
confirms, the fixed point at the origin is now unstable, and the system is
attracted to a new stable period-one fixed point. Thus we have our first
example of a phenomena whereby as the control parameter in an iterative
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map is changed, new fixed points can appear, and the stability properties of
old fixed points can change. Indeed, for r > 1/4 the new fixed point is at
x∗ = 1− 1/4r and this point is stable for 1/4 < r < 3/4.
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t = time 0.0 1.0
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(a) (b)

Figure 3.3 Logisti
 map with r =

7

10

: (a) The time series qui
kly stabilizes to a �xed

point. (b) The state spa
e of the same system shows how subsequent steps of the system

get pulled into the �xed point.

Figure from The Computational Beauty of Nature: Computer Explorations of Fra
tals, Chaos, Complex Systems, and Adaptation. Copyright
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Next consider a value of r slightly above 3/4, say at r = 0.8. We already
know from the above discussion that the period-one fixed point at x∗ =
22/32 will be unstable. In fact as Fig.(3.4) shows, the final orbit does not
converge to any fixed point but rather alternates between two points. This
orbit is called a period two orbit (or period two limit cycle), and the two
points between which the orbit oscillates are sometimes labelled as period-
two fixed points (or period two attractors) because they satisfy the the
relation xn+2 = xn.
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Figure 3.4 Logisti
 map with r =
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: (a) The time series qui
kly stabilizes to a period-
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le. (b) The state spa
e of the same system shows how subsequent steps of the
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) The state spa
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plotted, so as to 
learly show the limit 
y
le's lo
ation.

Figure from The Computational Beauty of Nature: Computer Explorations of Fra
tals, Chaos, Complex Systems, and Adaptation. Copyright



 1998{2000 by

Gary William Flake. All rights reserved. Permission granted for edu
ational, s
holarly, and personal use provided that this noti
e remains inta
t and unaltered. No

part of this work may be reprodu
ed for 
ommer
ial purposes without prior written permission from the MIT Press.

As r is increased further, the system will at some point undergo a period-
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4 cycle. Fig.(3.5) shows this for r = 0.88.
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Figure 3.5 Logisti
 map with r =

88
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: (a) The time series qui
kly stabilizes to a

period-4 limit 
y
le. (b) The state spa
e of the same system. (
) The state spa
e of the
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onverged values for x
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plotted.

Figure from The Computational Beauty of Nature: Computer Explorations of Fra
tals, Chaos, Complex Systems, and Adaptation. Copyright
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These period doublings continue as r is increased until at r = 0.8924865....
the system shows a completely aperiodic orbit. Such orbits are termed
’chaotic’, and though there are no fixed points now, the system is said to
have a chaotic or strange attractor. Fig(3.6a) shows the time series for
r = 1 which is in the chaotic regime. Fig(3.6c) shows how in the chaotic
regime, small differences in the initial conditions amplify quickly – this was
the sensitive dependence on initial conditions mentioned in the intro-
duction as a defining property of chaos.
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Figure 3.6 Logisti
 map with r = 1: (a) The time series is 
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tals, Chaos, Complex Systems, and Adaptation. Copyright
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3.4.2 Bifurcation Diagrams

Since changes in the value of the control parameter r produce attractors with
different periods, it is useful to plot the post-transient solutions against r.
This is shown in the bifurcation diagram of Fig.(3.7a). For r < 1/4 all orbits
decay to the attractive fixed point at the origin. As r crosses 1/4 a new
fixed point appears that is attractive for 1/4 < r < 3/4, while the one at the
origin becomes unstable. At r = 3/4 there is a period doubling bifurcation
because for 3/4 < r < 0.86237..., period-2 attractors exist. These period
doubling bifurcations continue as r crosses various thresholds, leading to
period 4, 8 etc attractors: In each case, as a particular threshold is crossed,
new period-2k attractive fixed points emerge, while the old period-2k−1 fixed
points become unstable. This is illustrated symbolically in Fig.(3.8) where
the dotted line represents a fixed point that become unstable as a threshold
is crossed, and as two new stable fixed points emerge (the two prongs of
the pitchfork) . Finally at r = rc = 0.8924865.... an infinite period results
(strange attractor) leading to chaos.
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0.0

1.0

0.85 0.90
0.8

0.9

(a) (b)

Figure 3.7 Bifur
ation diagrams for the logisti
 map: (a) This image has values of r

su
h that �xed points, limit 
y
les, and 
haos are all visible. (b) This image shows the

detail of the boxed se
tion of (a).

Figure from The Computational Beauty of Nature: Computer Explorations of Fra
tals, Chaos, Complex Systems, and Adaptation. Copyright
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Figure 3.8 A single bifur
ation

Figure from The Computational Beauty of Nature: Computer Explorations of Fra
tals, Chaos, Complex Systems, and Adaptation. Copyright
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As r is increased beyond rc, windows sometimes open up in the diagram
as periodic attractors recur at some points. Notably, now one begins to
see periodic attractors at odd integers. As r is further increased, these
odd periodic attractors themselves undergo period doubling bifurcations to
chaos. Indeed, it has been proven (Yorke) that period three orbits imply
chaos. For the logistic map, there is a period three window near 0.9571.. <
r < 0.9603...

One feature of the bifurcation diagram that should be noted is its self-
similarity. Fig.(3.7b) shows a magnified view of the boxed region in Fig(3.7a):
It looks very much like the original whole. In fact such approximate self-
similarity continues as further bifurcations take place. The self-similarity is
also important in establishing some universality properties of the bifurcation
process, as discussed below.

The above discussion has been for the critical values of the control pa-
rameter. To find the period 2k−1 fixed points, one needs to solve the equation

xn = xn+k. (3.12)

3.4.3 The Feigenbaum Constant and Universality

Let us denote the critical value of r at which the logistic map bifurcates
into a period-2k orbit as ak, so that for ak < r < ak+1 the map has a stable
period k orbit. Look at the bifurcation diagram in Fig.(3.7) and Fig.(3.9).
Notice how the distance, ak − ak−1, between period doublings decreases as
the control parameter is increased.
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The first few values of ak are

a1 = 0.75 ,

a2 = 0.862372...

a3 = 0.886022...

a4 = 0.891101...

a5 = 0.892189...

a6 = 0.892423...

a7 = 0.892472...

a8 = 0.892483... .

Mitchell Feigenbaum noticed that succesive differences appear to con-
verge geometrically (see Fig.(3.9)) and that the ratio of successive separa-
tions tends to a constant as k goes to infinity,

δ ≡ lim
k−>∞

ak − ak−1

ak+1 − ak
= 4.669201609... . (3.13)
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Although the discussion so far has been strictly limited to the logistic
map, the constant δ is the same for other smooth one-dimensional maps
with a single hump. This is an example of universality, a concept which we
will encounter more of when studying phase transitions in the next chapter.
In general systems fall into different universality classes, so that systems
within each class have the same behaviour. For the present discussion,
one says that all ’unimodal’ (smooth, concave downwards, with a single
hump) maps belong to the same universality class, that is bifurcate at a
rate leading to the universal Feigenbaum constant δ. The actual proof of
this statement is quite involved, but briefly stated, it uses the concept of the
renormalisation group that was developed to deal with critical phenomena
in statistical mechanics.

Although Eq.(3.18) is defined in the limit k → ∞, it can be used to
estimate the point at which a system becomes chaotic, a∞, if the first few
bifurcations of the system are known.

3.5 Experimental Tests

Careful experiments have revealed period-doubling bifurcations in a number
of real dynamical systems of different types: hydrodynamic, electronic, laser,
chemical and acoustic. Details may be found in the book by Cvitanovic.
Here we will examine the first of such measurements, the Rayleigh-Benard
convection experiment of Libchaber. In that experiment, liquid mercury
that was confined in a small box was heated from below to set up a tem-
perature gradient measured in terms of a dimensionless quantity called the
Rayleigh number, R. At low values of R the heat flow is by conduction,
but as R exceeds some critical value Rc, there is bulk motion of the fluid
(convection), leading to the formation of a pattern of cylindrical rolls as the
hot fluid rises on one side and cooler fluid descends on another. The tem-
perature is measured at a fixed point of a roll. For R only slightly above Rc,
the rolls are straight and the temperature constant. But as the heat flow
is increased, an instability occurs leading to wave propagation along the
roll and oscillations in the measured temperature. Further increases in the
heat flow lead to period doublings in the measured temperature oscillations.
From the first few period doublings the Feigenbaum number was estimated
to be 4.4 ± 0.1, remarkably close to the theoretical value 4.67. The other
experiments quoted above give similarly close values.

There is a puzzle here. The Feigenbaum constant was derived for uni-
modal one-dimensional maps. Those maps contain none of the physical
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details of the real experiments which are dynamical systems with many de-
grees of freedom evolving in continuos time and three dimensions. So why is
there any agreement between the predictions of the one-dimensional maps
and the real experiments ? In order to understand how that is possible, it
is useful to consider first the simple dynamical system of the next section.

3.6 The Rossler System

A model dynamical system which is simpler than the Lorenz model was
proposed by Rossler. The system consists of three coupled first-order differ-
ential equations

ẋ = −(z + y) (3.14)

ẏ = x+ ay (3.15)

ż = b+ xz − cz (3.16)

The system has three degrees of freedom represented by the dynamical vari-
ables x, y and z. Notice the nonlinear term xz in the last equation. There
are also three parameters a, b and c. By fixing two of the parameters and
varying the third one can study the approach to chaos. Let us fix a = b = 0.2
and treat c as the control parameter. Instead of plotting the time series for
the system, it is useful to consider phase portraits, that is by plotting one
degree of freedom against another. Figure(3.11) shows the x− y phase por-
traits (actually only the post-transient orbits are shown) for various values
of c. One sees clearly period one, period two and period four trajectories:
The period here refers to the number of times the cycle goes around before
closing. These period doubling sequences lead eventually a chaotic state
shown in Figure(3.11d).
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Fig.(3.11a): Rossler attractor for c=2.5
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Fig.(3.11b): Rossler attractor for c=3.5
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x



3.6. THE ROSSLER SYSTEM 53

Fig.(3.11c): Rossler attractor for c=4

0

y

x

Fig.(3.11d): Rossler attractor for c=5

y

10x

The behaviour of the z variable in the chaotic state (c = 5) is illuminated
by looking at the time series shown in Figure(3.12a). From that one sees
that the z coordinate is small most of the time, meaning that the trajectories
mostly are close to the x − y plane. However occasionally there are large
spikes in the z time series leading to a jump in the z coordinate. For reference
the time series for the x variable is shown in Fig(3.12b).
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The full three dimensional phase portrait for the chaotic state shown
in Figure (3.13). This is the strange attractor for the system. Notice that
the attractor lies in a bounded region of phase space, and its structure,
though complicated, is far from random. Indeed strange attractors have
been shown to have a fractal structure, that is self-similarity at different



3.7. THE LORENZ MAP 55

scales! This is our first indication that deterministic chaos is different from
noise or randomness.

Fig.(3.13): Rossler attractor for c=5

10z

y

10

x

There is an apparent paradox about chaotic states. We noted that they
were characterized by a sensitive dependence on initial conditions, which
leads nearby trajectories to diverge exponentially . On the other hand the
phase portrait is bounded: This is why the strange attractor justifies its
attractor label. So how are trajectories repelled and attracted at the same
time ? This is done by a process of stretching of nearby trajectories on short
time scales, followed by a process of folding at longer scales. The folding
process is evident in Figs(3.11d) and (3.13): Follow some trajectory in the
z = 0 plane, it will soon be lifted up at a spike of the z-component, and
is then folded back into the z = 0 plane of the attractor at another point,
to continue its evolution. The stretching and folding processes mix nearby
trajectories in the attractor and results in a decorrelation of closeby initial
states.

3.7 The Lorenz map

Now let us compare the results for the Rossler system with those of the one-
dimensional map. To do that we will plot the Lorenz map for the Rossler
system. The Lorenz map (not to be confused with the ’Lorenz system’!) is
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a way of obtaining a one-dimensional map from a time-series of a dynamical
system. For the Rossler system in the chaotic state, say c = 5, the time
series for the x variable is shown in Fig(3.12b). Label the successive local
maxima of that graph as xn, that is the n-th maxima is at xn. The Lorenz
map is then a plot of xn+1 versus xn for various n. The Lorenz map for the
Rossler system is shown below, Fig.(3.14).

0

5

10

X(n+1)

10X(n) Fig.(3.14)

The points lie on an almost one-dimensional unimodal curve. Thus there
should be an approximate relationship of the form xn+1 = f(xn) with f a
unimodal map. From Feigenbaum’s work it then follows that the Rossler
system will also show a period-doubling route to chaos and the same Feigen-
baum constant, as is indeed the case !

However not all systems have a one-dimensional Lorenz map, since that
requires the system’s strange attractor to be almost flat. In physical terms
this requirse that the system have only one or two degrees of freedom that
are dominant. In fact the experiments quoted above had that feature. In
other words, the universality theory is developed only for low-dimensional
chaotic systems.
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3.8 Noise versus Chaos

Look again at Fig.(3.12b). If you were not told that the time-series was from
a deterministic system, would you have been able to decide if the figure
was due to noise (random events) or to deterministic chaos ? This is an
interesting issue as one would like to know whether many apparently noisy
time-series in our daily lives (such as sunspots or brainwaves) are actually the
result of deterministic chaos and hence whether there are relatively simple
laws underlying those phenomena.

If there is an underlying strange attractor to the time series then one can
attempt to show this using the idea of attractor reconstruction. Suppose
one is given a time series x(n) obtained by sampling points at regular time
intervals. For a deterministic dynamics, The simplest assumption then is
that the value of x(n + 1) depends on its value at the previous time, x(n)
Thus one plots x(n + 1) against x(n) to see if a pattern emerges.

0.2

0.4

0.6

0.8

0 50 100 150 200
Fig(3.15a)
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Fig(3.15b)

–1

0

1

50 100 150 200

Fig.(3.15c)

Fig(3.16a) Fig.(3.16b) Fig.(3.16c)

For the attractor reconstruction to be succesful there are two issues that
one has to address. Firstly, the embedding dimension must be large enough
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for the attractor to become visible. In the above examples we plotted the
vector (x(n), x(n + 1)), meaning that we investigated a two-dimensional
embedding space. Since the dimension of the Lorenz or Rossler strange
attractors is three, a similar procedure for the latter cases would require an
embedding space of at least three dimensions, so we would need to plot for
example (x(n), x(n + 1), x(n + 2)).

The second issue is the optimal time delay to be used for the above
reconstruction. In the mentioned examples, the time delay was one. More
generally one can consider other values, so that for the Rossler system one
could plot (x(n), x(n+N), x(n+N + 1)), corresponding to a time delay of
N . The value of N might be determined by trial.

There have been several attempts to discover determinstic chaos in stock-
market data and to so profit from that knowledge. You can read about the
incredible and entertaining adventures of some physicists in this endeavour
in Ref.[6].

3.9 Summary

If a dynamical system becomes chaotic at some parameters of physical inter-
est then that is usually an unwelcome occurrence. Firstly, it means that the
system in the chaotic state is extremely sensitive to initial conditions, and
hence the errors inherent in real-life measurements of finite precision. The
extreme sensitivity implies a lack of practical predictability of the long-term
behaviour of the system even though the equations of motion are completely
deterministic !

Nevertheless long-term unpredictability due to chaos does not preclude
short-term predictability and usefulness. Furthermore, one might be able
to exploit the sensitive dependence of chaotic systems to initial conditions
by controlling those systems: very small perturbations to the system can be
used to completely change its long-term behaviour. Some attempts in this
direction are currently underway, for example, for control of cardiac chaos
(See Ref.[10]). However chaos might be useful in some cases: It has been
reported that epileptic seizures are the result of the electrical brain waves
syncronising, while their natural state is ”chaotic”!

It is very important to note that chaos arising in deterministic systems
is quite different from noise in random (stochastic) systems. This is because
one still sees order and patterns in the phase space plots for chaotic systems
which is absent for random systems. In fact one can say that chaos (in
deterministic systems) is order camouflaged as disorder ! An important
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technique in distinguishing whether a given time-series has a deterministic
underlying basis is through the method of attractor reconstruction.

For low-dimenisonal systems that are at least approximately equiva-
lent to a unimodal one-dimensional map, the approach to chaos is through
period-doubling bifurcations. The Feigenbaum constant summarizes the
universality of this class of systems. Chaos in higher dimensional systems
with many degress of freedom can occur in different ways from that in low-
dimensional systems.

In the previous chapter we saw how the geometric complexity of nature
could be described by simple algorithms and models that generate fractal
structures. That is, complex patterns and natural order can arise from a
simple underlying basis. In this chapter we see the flip side : very simple
deterministic dynamical models can lead to behaviour that looks random.
However the apparent disorder is actually chaotic rather than random as the
order is hidden now in the phase-space of the system. What this suggests is
that some of the apparent irregularity observed in nature or man-made sys-
tems might be ammeanable to deterministic modelling instead of appealing
to random processes.

3.10 Exercises

1. Practise plotting the state-space plots for the map xn+1 = x2n for
different initial values of x0. Use your own software or that in Ref.[1]
or a modified form of the MAPLE program mf35.mws from Ref.[3].

2. Consider the one-dimensional map xn+1 =
√
xn for x0 ≥ 0.

(a) Explore the above with a calculator, or guess its general behaviour.
Where are the fixed points, are they stable, and what is their basin of
attraction ?
(b) Confirm your results in (a) analytically.
(c) Confirm your results above with a graphical analysis using the
same software as you used in the previous problem.

3. (a) Give one example of positive feedback and one of negative feedback
from your personal experience.
(b) From your experience, give one example of a linear change and one
example of nonlinear dynamics or change.

4. With regards to the logistic map,
(a) Complete the steps leading to its derivation in the text.
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(b) Show that if the control parameter is restricted to 0 ≤ r ≤ 1, then
any initial 0 ≤ x0 ≤ 1 leads to a value of xn that is bounded between
the same values.
(c) Show alegbraically that for a reproduction rate 0 ≤ r ≤ 1/4, the
population of species will eventually (at infinite time) become extinct
no matter what the initial population is.
(d) Illustrate the result in (c) above graphically using a state-space
plot.
(e) Confirm the results in (4c,4d) analytically by showing that for 0 ≤
r < 1/4, the only period-one fixed point of the system is the ’trivial’
one at the origin and that it is stable (atractive). What happens when
r is exactly 1/4?

5. With regards to the logistic map,
(a) Show analytically that for r > 1/4 the trivial fixed point at the
origin becomes unstable.
(b) Show analytically that for r > 1/4 there is a period-one fixed point
at xf = 1− 1/4r and that this point is stable for 1/4 < r < 3/4.
(c) Verify the result in 5(b) graphically, using your favourite software,
for different values of r and x0.

6. (a) With regards to the logistic map, show that as r is increased beyond
3/4 the fixed point at xf = 1− 1/(4r) becomes unstable.
(b). Explain why the values of the two new period two fixed points
that result for r > 3/4 are obtained by solving the equation

xn+2 = xn. (3.17)

(c) Write out the above equation explicitly in terms of the single vari-
able xn. Without actually solving it, explain why two of the roots of
the equation must be xf = 0 and xf = 1− 1/4r, the two fixed points
that already exist for lower values of r.
(d) Verify explicitly that xf = 0 and xf = 1 − 1/4r are roots of the
above equation.
(e)Find the two new roots of the above equation. Show that these
roots exist only for r > 3/4.
(f)What is the condition for stability of period-two fixed points ? Show
that the two new roots in (e) above represent stable (attracting) fixed
points.
(g) Convince yourself of the period-2 orbits using your favourite soft-
ware.
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7. (a) Use the critical values of the control parameter for the logistic map,
ak, given in the text to evaluate

dk ≡ lim
k−>∞

ak − ak−1

ak+1 − ak
(3.18)

for 2 ≤ k ≤ 7.

(b) Compare the result of (7a) with the Feigenbaum constant δ.
(c) Use the values of a6, a7 and the Feigenbaum constant δ to estimate
the value of a8. Compare the result with the known value.

8. Use your favourite software (see for example the Maple file mf36.mws
of Ref.[3]) to explore the bifurcation diagram for the logistic map.
Look closely at the periodicity windows that open up in the chaotic
region and convince yourself that period three bifurcations exist there.

9. Explore the sine-map, xn+1 = r sin(πxn) for 0 ≤ x0 ≤ 1, 0 ≤ r ≤ 1, by
plotting the state space plots and the bifurcation diagram. Compare
with the logistic map.

10. Explore the map xn+1 = frac(2xn). Here ’frac’ means ’keep only the
noninteger part’.
(a) Make a state-space plot.
(b) Determine the fixed points.
(c) Show that there are infinitely many periodic and aperiodic orbits.
(d) Show that the map displays sensitive dependence on initial condi-
tions.
Hint: It is useful in this problem to consider the binary representation
of numbers.

11. Use your favourite software (e.g. the maple file ross.mws) to explore
the Rossler system (time series and phase plots) for different values of
the control parameter c. Note that in the Maple file you can easily
view different perspectives of three-dimensional plots (especially that
of the strange attractor) by clicking the mouse on the plot and dragging
it. Note also that by plotting only later points of the iteration, the
transient part fo the orbit is neglected. Practise plotting also the
transient parts fo the orbits to see the approach to the attractors.

12. (a) Repeat the above excercise for the Lorenz system using your favourite
software (for example the Maple file mf10.mws of Ref.[3]).
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(b) Obtain the Lorenz map for the Lorenz system using its z(t) time
series.
(c) Reconstruct the Lorenz attractor using one of its time-series, (using
for example the file mf42.mws of Ref.[3]).

13. Give an example of a situation where Chaos might be useful. Inform
yourself about some applications of chaos as mentioned in, for example,
Ref.[10].

14. Check out the resources in Refs.[7, 8, 9] for self-study.

3.11 References

1. The Computational Beauty of Nature, by Gary William Flake. See
also the book’s homepage at http://mitpress.mit.edu/books/FLAOH/cbnhtml/home.html
where you can obtain the source code for many of the plotting pro-
grams and simulations used in Flake’s book.

2. Fractals and Chaos, by P.A. Addison.

3. Nonlinear Physics with Maple, by R.H. Enns and G.C. McGuire, 2nd
Edition. This book comes with a CD containing useful Maple files.

4. Nonliear Dynamics and Chaos, by S.H. Strogatz.

5. The figures used in this chapter were taken from the website of Ref.[1]
(those with copyright notice attached below the figure caption) or
generated using the Maple software in the CD that comes with Ref.[3].
Some other figures used in the lectures were taken from Ref[4].

6. The Predictors, by T. Bass.

7. The freeware FRACTINT, easily available on the internet, contains
software for plotting strange attractors and bifurcation diagrams of
many chaotic systems, and also of fractals.

8. A pedagogical website on non-linear dynamics is at
http://www.apmaths.uwo.ca/ bfraser/version1/nonlinearlab.html

9. An introductory web-book on Chaos is at http://hypertextbook.com/chaos/

10. Some engineering applications of Chaos are mentioned in
http://www.ornl.gov/etd/etdchaos.htm
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Chapter 4

Equilibrium Systems

As mentioned in the introductory chapter, the complex systems one is in-
terested in ”complexity studies” are usually those that consist of a large
collection of interacting sub-units and that are out-of-equilibrium. Such
systems, or rather simplified models of the realistic systems, have become
accessible to study in the last two decades due to the explosive growth in
computer power at decreasing costs. We will study such out-of-equilibrium
complex systems in subsequent chapters, but here we will focus our attention
on simpler equilibrium systems.

However even a large system in equilibrium is not easy to describe and
understand analytically. Nonetheless, beginning already In the nineteenth
century brilliant minds applied themselves to the problem and developed the
fields of thermodynamics, kinetic theory and statistical mechanics. Some of
the concepts that have been developed for the description of phenomena in
equilibrium systems turn out to be relevant also for the study of more real-
istic out-of-equilibrium complex systems that occur in nature. Indeed, the
study of equilibrium systems gives a concrete and quantitative illustration
of the concepts of entropy, emergent laws and universality.

4.1 Thermodynamics and Kinetic Theory

Thermodynamics is the study of the macroscopic physical properties of a
large collection of particles. That is, instead of attempting to describe the
individual motion of the microscopic particles, one tries to make statements
about the properties of the system as a whole. One says that a system has
reached thermodynamic equilibrium when the macroscopic properties
do not change with time. The word system used here refers to the part of

65
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the world that one is interested in studying. Hence the world is conveniently
divided into the system, and an exterior or environment.

Note: Historically, the fields of kinetic theory and statistical mechanics
were developed even before there was direct proof about the reality of atoms.
Some indirect evidence that fluids consist of fast moving molecules was pro-
vided by observations in 1827 by the botanist Robert Brown who noticed
the jiggling motion of pollen grains suspended in water. After many careful
experiments he came to conclude that the motion was real and existent even
for inorganic suspensions. It came to accepted by scientists that this motion
of the suspended particle was due to the constant and random bombard-
ment it suffered from all sides by molecules of the liquid. A quantitative
explanation of the motion was later provided by Einstein.

4.1.1 State Variables

We are all familiar with the concept of temperature. The Zeroth Law of

Thermodynamics formalizes our intuition and experience as follows:
If a system A is in equilibrium with system B (that is, has no exchange of
heat with it), and if system B is in equilibrium with system C, then A is in
equilibrium with C.
This law allows us to associate a quantity called temperature to each system
in thermal equilibrium, so that two systems in equilibrium have the same
temperature. The thermometer is a device that uses the Zeroth Law in a
quantitative and practical way.

Note: We will use the absolute temperature scale where units are mea-
sured in Kelvins. The conversion from Celsius, t to Kelvin T is : T =
t+ 273.15.

In addition to the temperature, one may need more thermodynamic
parameters, called state variables, to completely characterize the state of
the system. For example, for a gas these are the pressure P and volume V .
Variables such as temperature and pressure that are independent of the size
of the system are called intensive, while those such as the volume are called
extensive. The parameters that can be used to describe a system are not all
independent but related by an equation of state. For an ideal gas one has
the equation

PV = NkT (4.1)

where k = 1.38 × 10−23 Joules/K is called Boltzmanns constant, and N is
the number of molecules. As you must have learnt in school, an ideal gas
is the universal limiting description of real gases when their density is very
low and the temperature high.
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In general, the equation of state of a real substance is more complicated.
It is usual to plot the equation of state as a function of its parameters. One
useful curve follows by keeping V constant and representing the equation of
state on a P − T plot as shown in the figure for a generic substance. The
lines mark boundaries between the different phases of the substance, where
changes occur in the physical properties of the substance.

4.1.2 The Ideal Gas

Since thermodynamics is a phenomenological description of macroscopic
matter, it does not take into account the underlying atomic structure. The
thermodynamic relations, such as the ideal gas law, are therefore often ap-
proximations that are good when one is talking about the average properties
of a large system, that is, a large number of atoms. Indeed the various ther-
modynamic relations can be considered as examples of emergent laws:
generalities about the system that are apparent only at the macroscopic
scale but are not obvious or existent at the microscopic level. Indeed even
the concept of temperature may be considered a macroscopic emergent fea-
ture that is ill-defined for a system with only a few atoms.

The above discussion can be illustrated for the case of the equation
of state of an ideal gas that allows a simple derivation starting from an
atomistic description. Consider atoms of a gas confined to a box which has
a frictionless and perfectly reflecting piston at one end. Let the area of the
piston be A the volume of the box V (see figure), and the number of atoms
be N . As the atoms rebound from the piston, they will impart momentum
to it and cause it to move. To prevent the piston from moving one must
therefore apply a force to it to balance that imparted by the atoms. Let this
external balancing force be F . We now calculate the force F in terms of the
parameters of the gas. Now Newtons law states that

F = rate of change of momentum, (4.2)

Hence in a short time interval dt,

Force × dt = change of momentum. (4.3)

Consider an atom of mass m and velocity v, with x-component vx hitting
the piston. It rebounds with an x-component −vx, and so the change in
momentum of the atom is −2mvx. Now for atoms with a velocity vx to
hit the piston in the time interval dt, they must be a distance vxdt away.
Assuming that the atoms are uniformly distributed, then there are n = N/V
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atoms per unit volume and so nAvx dt atoms that will hit the piston in that
time interval.

Hence the net change in momentum is −2nmAv2x dt, and so the pressure
F/A imparted by the piston on the gas is −2nmv2x and so by Newtons Third
Law the pressure of the gas is

P = 2nmv2x . (4.4)

Since the atoms in the gas have different velocities, the above result must
be averaged. Let < v2x > be the average of the squared x-component of the
velocities. This includes averages over both positive and negative velocities
and so taking half of this (to represent atoms moving towards the piston)
and substituting into the above equation we get

P = nm < v2x > . (4.5)

Now
v2 = v2x + v2y + v2z , (4.6)

and so
< v2 > = < v2x > + < v2y > + < v2z > . (4.7)

But on the average the motion in the three directions is equivalent and so

< v2x > = < v2y > = < v2z > , (4.8)

and hence

PV =
2N

3
< mv2/2 > . (4.9)

For a monatomic gas < mv2/2 > is the average kinetic energy of an atom
and so the quantity N < mv2/2 > represents the total internal energy U of
the gas. So

PV =
2

3
U (4.10)

for a monatomic gas.
The above is an elementary kinetic theory derivation of an ideal gas law.

Note however that temperature is absent from the equation. On comparing
the theoretical result (4.9) with the empirical equation (4.1), a relation is
obtained between the macroscopic concept of temperature and the mean
microscopic kinetic energy

< mv2/2 >=
3

2
kT. (4.11)



4.2. STATISTICAL MECHANICS 69

Thus at least in this simple case one has succeeded in deriving an empiri-
cal law (the ideal gas law) for a large system starting from the underlying
microscopic dynamics. The derivation is complete only after associating
some of the emergent macroscopic parameters with averages of microscopic
quantities. In more complicated situations, especially in the case of out- of-
equilibrium complex systems as defined in the introduction, one will not be
able to make such simple or direct associations between emergent laws and
patterns and the underlying microscopic theory.

Note: A more realistic equation for gases, valid at higher densities is the
Van der Waals equation of state (V − b)(P + a/V 2) = RT where a and b
are constants characteristic of the substance studied.

4.2 Statistical Mechanics

The kinetic theory method can in principle be generalized to more com-
plicated systems and even to out of equilibrium situations since once the
forces among the constituents are known one simply writes down the dy-
namical equations and explores their consequences. The problem is that the
equations are often too complicated and too many (for a large system) to
be solved for practical cases even using the most powerful computers. Fur-
thermore one rarely knows the initial conditions to plug into the dynamical
equations.

An alternative procedure called statistical mechanics allows various prop-
erties of equilibrium systems to be deduced using probabilistic methods.
This is now described. Consider an isolated classical system consisting a
large number N of molecules in a large molecular volume V . Typically N
and V are numerically of order 1023. If the position qi and momentum
pi of each molecule is known at a particular instant, then the subsequent
dynamics of the system is uniquely determined by the known laws of molec-
ular dynamics. Thus the state of the system is completely specified by
2 × 3 × N = 6N variables summarized as (p, q). It is useful to represent
the state of the entire system as a point in 6N dimensional phase space. Of
course this point traces out a path as the system evolves in time. However
since the system is isolated, its energy is constant (conserved) and so the
path is restricted to lie on a fixed energy surface.

Now, we are interested not in the detailed time evolution of the state
but rather its macroscopic properties in thermodynamic equilibrium. Let
f(q(t), p(t)) be some physical quantity written as a function of the state of
the system. Then in experiment one actually measures the time average
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of that quantity over a period T that is very long compared to the mean
molecular collision time.

< f >=
1

T

∫ T

0
f(q, p) dt . (4.12)

From a theoretical viewpoint the above formula is inconvenient and can be
replaced by an equivalent expression after appealing to the

Ergodic Theorem: After a sufficiently long time, any represen-

tative point of the system will cover the entire accessible phase

space.

Therefore instead of the time average as in (4.12), one can rewrite the
physical observable < f > as an average over phase space:

< f >=

∫

f(q, p) ρ(q, p) dq dp (4.13)

where ρ(q, p) is called the density function and represents the probability
to find the system in a state with coordinates between q and q + dq and
momenta between p and p + dp. Thus regions of phase space of high den-
sity are frequented more often than regions of low density. (By assuming
equilibrium, the density function does not depend explicitly on time).

Let the accessible phase space be divided into cells of size δp × δq = ∆,
so that cells smaller than size ∆ are not distinguished. Define Γ(E) as the
total number of phase space cells, or different states. Then the entropy of
the system is defined by

S(E,V ) = k log Γ(E) , (4.14)

where k is Boltzmanns constant. That is, entropy is a measure of the total
number of different microscopic states the macroscopic system can exist in.
Thus it is a measure of our lack of precise knowledge of the system, or
equivalently the amount of disorder in the system: The larger the number
of microstates for a particular macrostate, the greater our ignorance of the
underlying microstate, and also the larger the amount of disorder in the
system (a system with a limited number of possible microstates is more
restricted or ordered).

4.3 The Second Law

Second Law of Thermodynamics: The entropy of a thermally isolated
system never decreases.
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Thermally isolated systems are also called closed systems: There is no
exchange of energy or matter with the environment. The above statement
of the second law can be shown to be equivalent to other statements found
in books (e.g. the Kelvin and Clausius statements) that summarize some
empirical facts about nature. Processes in closed systems for which the
entropy remains constant are called reversible while those for which the
entropy increases are called irreversible.

To see how the above terms correspond to our intuitive use of them,
consider the following example: An isolated box contains an equal number
of two types of molecules, say ’white’ and ’black’. Suppose one had the
extreme case where all the white molecules were on the left and all the black
molecules on the right. Of course this is an unnatural situation and soon, due
to collisions, the molecules will totally mix. The first situation corresponds
to a state of maximum order and minimum uncertainty about the microstate
while the second situation corresponds to large disorder (randomness) and
maximum ignorance on our part about the microstate of the system.

One can compute the entropy of the ordered and disorderd states: Clearly
there are many more ways to form the disordered state than the ordered state
and thus from the definition of entropy, the entropy of the disordered state
is much higher than the entropy of the ordered sate. Since we know that
the gases will mix, the system goes from the ordered state to the disordered
state, increasing its entropy in accordance with the second law. We also
know that if the number of molecules is very large, it is extremely unlikely
that the gases will revert to the totally separated state at some future time.
Thus the increase in entropy and disorder in the system is for all practical
purposes irreversible, in agreement with the definition above.

Note that the irreversibility is not due to the underlying fundamental
laws (e.g. Newtons laws are reversible) but a result of the system going
from an unlikely ordered state to a more probable disordered state, and the
fact that for large systems (large number of molecules), the probability of
the system reverting to the ordered state being negligible. In the above
example, the probability of any one molecule being on the left half of the
box is 1/2. If there are N molecules, the probability that all of them are
on the left is (1/2)N . Even for N as small as 100 this works out to be
about 10−30, an infinitesimal quantity ! For macroscopic materials, N is of
the order of 1023, and so the resulting probability is even lower. Thus the

Second Law is actually a statement about average behaviour that

becomes overwhelmingly likely in a very large system, meaning

that exceptions will be unobservable in all practical situations.

What is the largest isolated system? The universe of course! Thus the
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second law of thermodynamics states that the entropy of the universe never
decreases. In fact looking around we see that most of the changes in the
universe lead to an increase in randomness and are irreversible. Thus the
entropy of the universe seems to be increasing! Thermodynamically, one says
that time flows in the direction of increasing entropy, or that the arrow of

time is in the direction of increasing entropy of the universe.

4.4 The First Law

We have discussed the Zeroth and Second Laws. What is the First law?

The first law of thermodynamics is actually a statement of the conser-
vation of energy. The experiments of Benjamin Thompson, James Joule
and others demonstrated that heat was a form of energy and that it could
be produced by doing mechanical work, and also conversely could be trans-
formed into mechanical energy. Let dQ be the net amount of heat absorbed
by a system in an infinitesimal transformation and dW the amount of work
done by the system (note the sign conventions!). Then the first law states
that the quantity dU defined by

dU = dQ− dW (4.15)

is the same for all transformations that lead the system from its initial
to final state, that is

∫

dU is independent of the path of integration in
state space and only depends on the end points. This property is not true
individually of dQ and dW since the amount of heat absorbed or the work
done depends also on the actual process, that is, path in state space. The
quantity U is called the internal energy of the system (Recall its appearance
in the ideal gas law (4.10) derived using kinetic theory).

4.5 Entropy for Open Systems

We would like to derive a thermodynamic relation for entropy (as opposed
to the statistical definition given above) in general systems which are not
necessarily closed, that is which allow an exchange of heat with the sur-
roundings. Firstly note that for systems which are not closed, the defintion
of reversibility is more general : It means that the system retraces its path
in time when the external conditions are reversed in time. So consider now
an infinitesimal reversible transformations. We can then write (recall the
kinetic theory discussion again, work done = force × distance = P × A×
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distance.)

dW = PdV . (4.16)

Thus for a general infinitesimal reversible transformation, we have from the
first law

dQ = dU + PdV (4.17)

On the other hand, the entropy S can be treated as a function of U and
V (see the statistical definition given earlier), which under an infinitesimal
reversible transformation changes by

dS =

(

∂S

∂U

)

V
dU +

(

∂S

∂V

)

U
dV (4.18)

Define (this will be checked for consistency later!),

(

∂S

∂U

)

V
=

1

T
(4.19)

and
(

∂S

∂V

)

U
=

P

T
(4.20)

Then Eq.(4.18) becomes

TdS = dU + PdV (4.21)

Which then implies on comparing with the first law (4.17) that for an in-
finitesimal reversible transformation (in a general, not necessarily closed
system), the change in entropy is given by

dS =
dQ

T
(4.22)

One can use (4.22) to compute the the difference in entropy between two
states A and B. Choose a reversible path joining the two states and integrate
the above equation to get

S(A)− S(B) =

∫ A

B

dQ

T
(4.23)

Note: S is a state function, so its value is fixed once the independent
parameters, say U and V are fixed. On the other hand, to calculate it using
the formula above, one must choose a reversible path since for a general ir-
reversible path the quantity calculated depends on the path taken and is not
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the entropy difference between the two states. (It is an assumption of clas-
sical thermodynamics that one can always find a reversible transformation
between any two states connected by an irreversible one).

To illustrate this point, consider two different isothermal expansions of
an ideal gas from volume V1 to volume V2.
1. Reversible isothermal expansion.

∆Sgas =

∫

dQ

T
=

1

T

∫

dQ . (4.24)

Now for an ideal gas U = U(T ) only (see section(1)), hence in the expansion
∆U = 0 and so from the first law the heat absorbed by the gas equals the
work done. So

∆Sgas =
1

T

∫

p dV = N k

∫

dV

V
= N k log

(

V 2

V 1

)

. (4.25)

The entropy change of the heat reservoir is

∆Sreservoir = −∆

(

Q

T

)

= −∆ Sgas (4.26)

Is it surprising that the entropy of the reservoir has decreased ? No,
there is nothing forbidding it since it is not an isolated system. Indeed if
one looks at the change of entropy of the combined larger system of gas plus
reservoir, it is zero, in agreement with the second law (for isolated systems).
Note that reversibility in the above system can be achieved by storing the
work done by the gas on expansion in a spring attached to the piston, so
that this can be used to compress the gas thus reversing the expansion.

2. Free Expansion. Since the intial and final states (volume and tempera-
ture) of the gas are the same as before for the reversible case, the change in
entropy of the gas is as before (because S is a state function, and anyway its
calculation requires choosing a reversible path joining the initial and final
states).

Since as before ∆U = 0 for the gas and as no work is done in a free
expansion, ∆W = 0 also, implying that no heat is exchanged between the
gas and its reservoir. Hence the entropy change of the reservoir is zero. Thus
there is a net increase of entropy of the combined gas plus reservoir system.
Furthermore the expansion is clearly irreversible (Why?)
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4.6 Phase Transitions

We have seen a generic phase diagram earlier. It showed that under certain
conditions (along the boundary lines), one could have the substance existing
simultaneously under more than one state (for example, liquid and gas).
That is, the system along the lines is not homogeneous. Away from that
line of course the state of the system is homogeneous and is called a phase
of the system. When one crosses a line, by tuning the parameters, the
system undergoes a phase transition, often accompanied by an absorption
or release of heat into the surroundings (e.g. consider melting of ice or the
boiling of water). In phase transitions the entropies of the respective phases
before and after are often different: Such transitions are called first-order
phase transitions, while those for which the entropy is continuous across the
boundary are called second-order. For first-order phase transitions, one
defines the latent heat L as that which is exchanged with the surroundings,

L = T ∆S. (4.27)

4.6.1 Second Order Transitions

Thermodynamic properties of systems near a second order phase transition
are of great interest because one observes great simplicity and universality in
their behaviour. A ferromagnetic system is an example of one that displays a
second-order phase transition and will be used below for detailed discussion.
At low temperature, an appreciable fraction of the atomic spins (the ”atomic
magnets”) in some metals (e.g. iron) become spontaneously polarized in the
same direction, thus giving rise to a net measurable magnetic field. However
as the temperature is raised, the spins become randomized due to thermal
agitation and the magnetization is lost. The critical temperature at which
the change occurs is called in this system the Curie point. (For iron this is
1044K).
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Symmetry

We are all familiar with the colloquial use of the word symmetry to
describe objects: Something that looks the same from more than one
side. Mathematically one defines an object as being symmetrical if it
looks the same after one has done “something” to it. For example a
circle looks the same even after it has been rotated about its centre by
any amount. A square on the other hand looks the same only when
rotated by multiples of ninety degrees. Thus different objects can have
different amounts of symmetry. Though symmetry is important, the
breaking of symmetry is even more relevant in the real world: Most
systems we see do not correspond to cases of high symmetry eventhough
the basic laws might be. Thus one has to understand how and why this
symmetry is broken. “Self-organisation”, which is a form of emergence
that we will look at in later chapters, is actually a case of symmetry
being spontaneously broken.

The spatial symmetries of the system in the two phases are different. In
the high-temperature phase the system is disordered, with no net magnetiza-
tion but with complete rotational symmetry (isotropy). At low temperature,
the system becomes ordered and the net magnetization defines a preferred
direction in space. The material thus becomes anisotropic at low tempera-
ture, breaking rotational symmetry. The low-temperature ordered phase is
therefore less symmetrical and to describe it fully one needs to introduce an
extra parameter called the order parameter, which in this case is just the
magnetisation vector ~M . For simplicity, we will work below with a single
component M , called the scalar magnetization (you can think of this as the
magnetization in the z-direction of a planar ferromagnetic system). When
M = 0 one is in the disordered high-temperature phase while for M 6= 0,
one is in the low-temperature ordered phase with net magnetization.

(A more familiar example is the ice to liquid water phase transition.
The molecules in liquid water are in a disordered state and the system is
homogeneous and isotropic. As water is cooled it freezes into ice whose
properties are no longer isotropic as the molecules are now arranged in a
regular lattice which defines fixed directions. That is, the solid state is more
ordered but has less symmetry than the liquid state. Unfortunately this
liquid-solid transition is an example of a first order phase transition, while
our interest below is in continuous or second-order phase transitions. The
liquid-vapour transition on the other hand does have a second-order phase
transition at the critical point as we will discuss briefly later.)
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When one discusses ferromagnetic systems, often it is in the presence of
some external magnetic field H, which actually defines the direction of M
from one of the many otherwise equivalent possibilities. The susceptibility
χ measures the change of the system to a change in the external field and
is given by

χ ≡ 1

V

∂M

∂H . (4.28)

Note: Just as the pressure P and volume V were thermodynamic parameters
for a gas, the relevant parameters for a ferromagnetic system are H and M .
In fact H plays a role analogous to the intensive parameter P and −M
(note the minus sign) plays a role similar to the extensive parameter V .
For example the work done by the ferromagnetic system in an infinitesimal
change is given by

dW = −H dM . (4.29)

4.7 Correlation Function and Critical Exponents

Let the order parameter M be written as a volume integral (in d dimensions)
over an order-parameter density m(~r). Then

M = <

∫

ddr m(~r) > (4.30)

where <> represents the statistical average by which one obtains thermo-
dynamic functions and ddr is the volume element in d dimensions. A useful
quantity that can now be defined is the correlation function

Γ(~r) = < m(~r)m(0) > − < m(~r) >< m(0) > . (4.31)

It measures how the value of the order parameter at one point is correlated
to its value at some other point. If Γ decreases very fast with distance, then
far away points are relatively uncorrelated and the system is dominated by
its microscopic structure and short-ranged forces. On the other hand, a
slow decrease of Γ would imply that faraway points have a large degree of
correlation or influence on each other. The system thus becomes organsied at
a macroscopic level with the possibility of new structure beyond the obvious
one dictated by the short-ranged microscopic forces. As we shall see below,
this possibility does actually occur.

Usually, near the critical point (T → Tc), the correlation function can
be written in the form

Γ(r) → r−p exp(−r/ξ) (4.32)
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where ξ is the correlation length. The correlation length is a measure of
the range over which fluctuations in one region of space are correlated with
(influence) those in another region. Two points which are separated by a
distance larger than the correlation length will each have fluctuations which
are relatively independent, that is, uncorrelated.

Experimentally, the correlation length is found to diverge at the critical
point. Thus near the critical point, the correlation length may be written as

ξ ∼ |t|−ν , (4.33)

where t = T−Tc

Tc
. The divergence of the correlation length at the critical

point means that very far points become correlated. In other words, the
long-wavelength fluctuations dominate. Thus the system near a second-
order phase transition loses memory of its microscopic structure and begins
to display new long-range macroscopic correlations.

Exactly at the critical point, the correlation function (4.32) therefore
displays a power law behaviour ∼ r−p with

p ≡ d− 2 + η (4.34)

Here d represents the effective space dimensionality of the system. The
quantities ν and η are examples of what is known as critical exponents.
Experiments, supported by renormalization group theory, have shown that
systems undergoing second-order phase transitions can be grouped into uni-
versality classes. Within each universality class, very different systems with
widely different critical temperatures, have approximately the same critical
exponents. The reason for this is precisely the loss of memory mentioned
above, so that systems with different microscopic structures can give rise to
the same long-range behaviour.

In addition to the above two critical exponents, there are four more,
α, β, γ, δ defined by

Heat Capacity: C ∼ |t|−α

Order Parameter: M
V ∼ |t|β

Susceptibility: χ ∼ |t|−γ

Equation of state (at t=0): M
V ∼ |H|1/δ .

Here M/V refers to the magnetisation density. The first three exponents
refer to the case H = 0. Note that in general the thermodynamic quantities
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near the critical temperature may contain both finite and singular parts (or
a part with singular derivatives). It is the singular dominant parts to which
one refers to above with the ∼ symbol above (the symbol also implies a
proportionality constant).

4.7.1 Critical Opalescence

As mentioned above, at the critical point the correlation length diverges so
that the correlation function obeys a power-law. This of course implies that
the system has no characteristic length at this point and is scale-invariant,
exhibiting fluctuations of all length scales.

Consider liquid water heated in a sealed container. As the temperature
is raised, more of the liquid will vaporise, quickly increasing the density of
the gas phase. At the same time the density of the liquid phase decreases,
so that eventually a point is reached (about 647K and 218 atm) where the
two phases have the same density. Near this point one finds in the fluid
domains of liquid-like and vapour-like phases of all sizes (that is, scale-
invariant fluctuations between the two phases). In particular once there
are liquid drops of the same size as the wavelength of visible light, strong
scattering takes place giving the fluid a cloudy appearance: this is called
critical opalescence.

Experimentally it is easier to observe critical opalescence in binary fluid
mixtures that show a second-order phase transition with regard to their
mixing. See pictures in Ref[4].

4.8 Scaling Laws

Using the scaling hypothesis as described in the appendix, four scaling re-
lations can be obtained among the six critical coefficients:

Josephson: νd = 2− α ,

Rushbrooke: α+ 2β + γ = 2 ,

Widom : γ = β(δ − 1) ,

Fisher: γ = ν(2− η) .

In the table the experimental values of the scaling relations are com-
pared with the theoretical predictions. The agreement is very good! Thus
near a second order phase transition, as the correlation length diverges, a
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system loses memory of the underlying microscopic structure so that dif-

ferent systems obey the same universal relations. These relations may
be considered as further examples of emergent laws.

4.8.1 The Ising Model

Also shown in the table are results for the Ising model. The Ising [8]model
is a very simple model of ferromagnetic systems. The model in d-dimensions
consists of a periodic lattice (hexagonal, cubic etc) with fixed lattice points.
Attached to each lattice site i are spin variables si which take either the value
+1 or 1. These spin variables represent the atomic magnets. Each spin is
allowed to interact with only its nearest neighbours or an external magnetic
field. The spin-spin interaction is such that it is energetically favourable for
neighbouring spins to align. Therefore at low temperatures, where thermal
fluctuations are small, one might expect that the thermodynamically stable
state will correspond to a state of spontaneous magnetization (even in the
absence of an external magnetic field). That is, although the spins only
interact with their neighbours, the net result can be a cooperative state, in
which far-away spins become correlated. Thus one sees the emergence of long
ranged (macroscopic) correlations and order at low enough temperatures
even though the microscopic model has only short-ranged interactions.

Quantitatively, it is remarkable that such a crude model gives theoretical
predictions for the critical exponents and scaling relations that agree with
experiments on real systems. This again illustrates the power of universality
near the critical point: the microscopic (short-distance) information of the
system, whether real or theoretical, is washed out, leading to common and
similar macroscopic properties for systems within each universality class.
(Universality classes differentiate between systems in different dimensions
with different underlying symmetries).

Although the Ising model is simple to state, the computation of its ther-
modynamic properties is extremely involved and for d = 3 requires numerical
effort using a computer. Nevertheless many other models, as simple as the
Ising model but different from it have been used to model real systems and
to compute and compare their critical properties. This is not only a test of
universality but gives insight into properties of varied systems.

4.9 Percolation

Percolation is a geometric analog of thermal phase transitions that is inter-
esting on its own. Consider a square lattice, large enough (ideally infinite)
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so that we may ignore boundary effects in our discussion. Let each site of
the lattice be empty or occupied with a probablity p: The occupation of
the sites is decided by a random process, so the sites are independent of
each other. Now for p = 0, all sites are empty while for p = 1 all sites are
occupied. Define a cluster as a group of nearest neighbour sites that are
occupied. As p increases from 0, a critical point p = pc is reached when a
large cluster is formed stretching from one edge of the lattice to the opposite
edge.

The value pc is called the percolation threshold and at this point there
is a significant change in the properties of the lattice. For example, if sites
represent pores in a rock, and being occupied means the pores are open,
then at the percolation threshold water can seep through from one end of
the rock to the other. There are other physical problems that can be studied
with a percolation model, such as forest fires, or conductivity of a random
network.

Since percolation is a random process each simulation on a lattice for
fixed p will give rise to different clusters of varied sizes and one must discuss
statistical properties of relevant quantities (such as cluster size) obtained
after an averaging. It is found that near the percolation threshold the phys-
ically interesting quantities diverge and show power-law behaviour similar to
that near the crtical point of a second-order phase transition, with p playing
the role analogous to temperature. Therefore for the percolation problem
one can again define critical exponents and show their universality (that is,
independence from underlying lattice type).

At the critical point, the structure of the clusters becomes fractal, that
is, there are clusters of all scales and the self-similarity dimension is fractal.
This is perhaps not very surprising since at the critical point the properties
of the system become scale-invariant and obey power-laws.

4.10 Summary

Statistical mechanics supplements the deterministic fundamental laws with
probabilistic tools in order to obtain effective descriptions of equilibrium
macroscopic systems consisting of a large number of particles. This gives
rise to emergent or effective laws that are not apparent at the microscopic
level. The more useful of these laws are those that show universality, that is
are independent of the microscopic details of theory. This was emphasized
already for the case of the ideal gas law.

For equilibrium systems, the concept of entropy summarizes via the Sec-
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ond Law the tendency of isolated systems to move towards greater disorder.
As we saw from the statistical definition of entropy, the Second Law it-
self is an emergent law valid for large systems: Indeed the Second Law
suggests macroscopic irreversibility eventhough the microscopic dynamics is
reversible. For systems that are not isolated but with some state-variables
kept constant, the free-energies F and G determine the equilibrium states
through extremal principles.

More usually quoted examples of universal emergent laws are those that
arise near the critical point of a second-order phase transition. Near the
critical point the correlation length diverges so that the system becomes
scale-invariant, meaning that its properties become insensitive to the micro-
scopic structure and display some universality.

Percolation is a geometric analog of thermal systems that shows be-
haviour similar to that of second order phase transitions.

It should be noted that because of universality near the critical point,
the very simple models (whether for thermal systems or percolation) give
results for critical properties that are in quantitative agreement with ex-
periments even though the real microscopic dynamics of the experimental
systems might be much more involved. This will not always be the case
for other complex systems that we will study, where usually the agreement
between models and reality will be qualitative at best. Nevertheless the
virtue of the models even in those cases is that they highlight the important
features that enable one to obtain crucial insight that might otherwise be
lost in a mass of detail if the system was represented and studied by more
accurate equations.

4.11 Appendix

Although one can do so more rigorously, simply using the mapping descibed
above Eq.[4.29] allows us to obtain the relation

M = −
(

∂G

∂H

)

T
(4.35)

Where G is now the Gibbs free energy of the ferromagnetic system with H
and M the relevant parameters. Another quantity of interest is the heat
capacity given by

CH =

(

∂Q

∂T

)

H

= −T

(

∂2G

∂T 2

)

H

(4.36)
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Under an infinitesimal reversible transformation one has, dG = −SdT +
V dP , where G = U − TS +PV is the Gibbs free energy. Thus one deduces
the relations

S = −
(

∂G

∂T

)

P
(4.37)

V =

(

∂G

∂P

)

T
(4.38)

CP = −T

(

∂2G

∂T 2

)

P

(4.39)

These relations will be used in the next subsection.

4.11.1 The Scaling Hypothesis

If a quantity is dimensionless (for example, fractional volume), then it re-
mains unchanged when the length scale is changed. On the other hand, any
dimensional quantity (for example, volume) must be expressed in terms of
some unit of length and it will change when that unit is changed.

In general a system will have an (or more than one) intrinsic length
scale, such as the mean distance between nearest lattice points (atoms) in
a crystal. The scaling hypothesis posits that near the critical point the
correlation length, ξ, is the only characteristic length scale in terms of which
all other quantities with dimensions of length are to be measured. Using this
assumption one can derive a number of scaling laws which can be compared
with experiment. (A more rigorous derivation of scale invariance and critical
exponents requires renormalization group theory which is beyond the level
of this course. Ken Wislon received the Nobel prize for that development
[5]).

Let us first determine the length dimensions of various quantities. The
Gibbs free energy has the same dimension as energy so G/kT is dimension-
less. The Gibbs free energy per unit volume g = G/kTV therefore has the
dimension (length)−d. One writes this statement as

[g] = L−d (4.40)

Note: Although the real world is three dimensional, systems can be studied
under conditions which effectively reduces their diemsnionality to two or
one. Thus d is the effective dimensionality of the system.

The correlation function has by definition the length dimension 2−d−η.

[Γ] = L2−d−η . (4.41)
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Therefore it follows from the definition of Γ that

[
M

V
] = L(2−d−η)/2. (4.42)

Hence from (4.35), the dimension of the magnetic field is

[H/kT ] = L(η−2−d)/2 (4.43)

and then from Eq.(4.28) the dimension of χ is

[kTχ] = L2−η . (4.44)

Now since the scaling hypothesis states that ξ is the only characteristic scale
near the transition temperature, one replaces L in the formulae above by ξ
and uses also the definition that ξ ∼ t−ν to obtain the critical exponents.
Comparing those with the definitions given one obtains four relations:

2− α = νd (4.45)

β = −ν(2− d− η)/2 (4.46)

γ = ν(2− η) (4.47)

βδ = ν(2 + d− η)/2 . (4.48)

combinations of these relations result in the four named scaling laws
described above.

4.12 Exercises

1. (a) How does one know where the solid, liquid and gas regions are in
an unlabled P − T plot of a substance?
(b) What is the significance of the triple and critical points?
(c) How does the P − T plot for water differ from that of a generic
substance?
(d) Do you know why the ”anomalous” P − T property of water is
wonderfully important ?

2. Show that for a thermodynamic system with parameters P , V and T ,
the heat capacities are

(a) CV ≡
(

∂Q
∂T

)

V
=
(

∂U
∂T

)

V
.

(b) CP ≡
(

∂Q
∂T

)

P
=
(

∂H
∂T

)

P
, where H = U + PV is called the en-

thalpy (not to be confused with the entropy!).
(c) Obtain Cv and CP for an ideal gas. Why is Cp larger than Cv ?
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3. Use the definitions (4.19) and (4.20) together with the equation of
state of an ideal gas to determine the entropy of an ideal gas.

4. Show that heat conduction, along a metal bar between two heat reser-
voirs at temperatures T1 and T2 leads to an increase of entropy of the
whole system. The result again conforms to our experience that heat
flow is an irreversible process in the sense that it flows from the hot
to cold object and never the other way.

5. Diffusion is a familiar physical example of the Second Law in action.
Give some examples of diffusive processes. Where else in this course
have you learnt about diffusion in a useful model of nature?

6. The Second Law can be stated in many equivalent ways. One macro-
scopic statement of the Second Law is as follows (Clausius): In any
cyclic transformation throughout which temperature is defined, one has

∮

dQ

T
≤ 0, (4.49)

where the integral is over one cycle. The equality holds for reversible
transformations. Show that as a consequence of this statement
(a) For any transformation,

∫ B

A

dQ

T
≤ S(B)− S(A) (4.50)

(b) The entropy of a thermally isolated system never decreases (i.e.
recover the original statement of the second law in the text).

7. Two useful state functions are the Helmhotz free energy F, and the
Gibbs free energy G, defined by F = U − TS and G = F +PV . Show
using (4.50) that
(a) For a mechanically isolated system kept at constant temperature,
the Helmhotz free energy never increases (thus the state of equilibrium
of a mechanically isolated system at constant temperature is one of
minimum F .) Does this statement reduce to something familiar in the
limit of zero temperature ?
(b) For a system kept at constant temperature and pressure, the Gibbs
potential never increases (thus the state of equilibrium of a system kept
at constant temperature and pressure is the state of minimum Gibbs
free energy.). Convince yourself that a limiting case of this reproduces
(a).



86 CHAPTER 4. EQUILIBRIUM SYSTEMS

(c) The above are examples of extremum principles, applicable to more
general situations than the first version of the Second Law mentioned
in the text (which applied only to isolated states, U and V constant).
These principles determine the thermodynamically stable equilibrium
states. Convince yourself that in limiting cases the above extremum
principles are equivalent to the first version of the Second Law stated
in the text.

8. (a)Show that both sides of equation (4.27) have units of heat energy.
(b) Show that melting and boiling result in an increase of entropy of
the system.

9. (a) Water vapour, where the atoms are free to move more randomly,
clearly corresponds to a state of larger entropy than the state of liq-
uid water. So why does liquid water at any fixed temperature remain
liquid and not spontaneously vaporize to increase its entropy ?
(b) The above example highlights why things do not spontaneously
’disintegrate’ or ’decay’, as suggested by misinterpretations of the Sec-
ond Law. Can you now explain why paper does not undergo sponta-
neous combustion into a disordered mess ? (Hint: Check out Ref.[3])

10. (a) Notice that near the crtitical point of a second order phase tran-
sition one obtains power law behaviour of relevant quantities. Where
else in this course have you come across power laws ?
(b) Compare the concepts of ”characteristic length” and ”scale invari-
ance” used here with their use earlier in the course.
(c) Compare the universality in second-order phase transitions with
its earlier usage in the course.

11. There are many Ising Model simulations freely available on the web.
(a) Run the program at Ref.[6] for various temperatures, trying both
hot and cold initialisations, and looking at various plots. Do the results
appear reasonable ?
(b) Try also the smaller online simulation at Ref.[7].

12. (a)Explore the two dimensional percolation online simulation package
at Ref.[9]. Try various lattice sizes and probability values. Check for
the cluster sizes.
(b) Estimate the critical probability and compare with the theoretical
value 0.5928 (Remember that the crtical probability refers to a lattice
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of infinite extent. In practise this means you should explore larger and
larger lattices and try to find upper and lower bounds on your pc).

4.13 References

1. Statistical Mechanics, by Kerson Huang.

2. The Feynman Lectures on Physics, by Feynman, Leighton and Sands.

3. A website explaining ”Why things dont go wrong more often” is at
http://www.secondlaw.com/default.htm

4. A web demonstration of critical opalescence is at
http://www.physicsofmatter.com/CriticalOpal/OpalFrame.html

5. Wilson at http://www.physics.ohio-state.edu/ kgw/kgw.html

6. A Ising model simulation package is at at
http://bartok.ucsc.edu/peter/java/ising/keep/ising.html .

7. A small online Ising model simulation is at
http://www.phy.syr.edu/courses/ijmp c/Ising.html

8. Ising at http://www.bradley.edu/las/phy/ising.html

9. An online percolation simulation package is at
http://kzoo.edu/ jant/p705/Percolate.html

10. Percolation Theory, by D. Stauffer and A. Aharony.
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Chapter 5

Self-Organised Criticality

When we studied equilibrium systems, we saw that many thermodynamic
relations or laws could be derived by averaging over the unobserved mi-
crostates of the system. The resulting relations were thus emergent laws
that are incredibly accurate for large systems. It is important to note, for
contrasting with what follows below, that the macrosocpic laws derived in
chapter(4) describe each macroscopic state. On the other hand, many com-
plex systems in nature display regularities in a statistical description of their
observable macrostates.

5.1 Power Laws in Nature

An example of a statistical macrosopic relation is the distribution of the mag-
nitude of earthquakes. If N(E) is the annual mean number of earthquakes
(in a zone or worldwide) of size E ( ∼ energy released), then empirically one
finds over a wide range,

N(E) = E−b (5.1)

with the constant b ∼ 1. The relation (5.1) is called the Gutenberg-Richter
law and is obviously a statistical relation for observables – it does not specify
when an earthquake of some magnitude will occur but only what the mean
distribution in their magnitude is.

The Gutenberg-Ricter law is a power-law and is therefore scale-invariant
– a change of scale inM can be absorbed in a normalisation constant, leaving
the form of the law invariant. The scale-invariance of the law implies a
scale-invariance in the phenomena itself: earthquakes happen on all scales
and there is no typical or mean magnitude!

89
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There are many other natural phenomena which exhibit power laws over
a wide range of the parameters: Volcanic activity, solar-flares, charge re-
leased during lightning events, length of streams in river networks, forest
fires, and even the extinction rate of biological species! Some of these power
laws refer to spatial scale-free structures, or fractals, while some others re-
fer to temporal events and are examples of the ubiquitous ”one-over-f ”
phenomena (see chapter 2).

Can the frequent appearance of such power laws in complex systems be
explained in a simple way? Note that the systems mentioned above are
examples of dissipative structures, with a slow but constant inflow of energy
and its eventual dissipation. The systems are clearly out of equilibrium,
since we know that equilibrium systems tend towards uniformity rather than
complexity. On the other hand the abovementioned systems display scale-
free behaviour similar to that exhibited by equilibrium systems near a critical
point of a second-order phase transition.

However while the critical point in equilibrium systems is reached only
for some specific value of an external parameter, such as temperature, for
the dissipative structures above the scale free behaviour appears to be ro-
bust and does not seem to require any fine-tuning. Bak and collaborators
proposed that many dissipative complex systems naturally self-organise to
a critical state, with the consequent scale-free fluctuations giving rise to
power laws. In short, the proposal is that self-organised criticality is the
natural state of large complex dissipative systems, relatively independent of
initial conditions. It is important to note that while the critical state in an
equilibrium second-order phase transition is unstable (slight perturbations
move the system away from it), the critical state of self-organised systems
is stable: systems are continually attracted to it!

The idea that many complex systems are in a self-organised critical state
is intuitively appealing because it is natural to associate complexity with a
state that is balanced at the edge between total order and total disorder
(sometimes loosely referred to as the ”edge of chaos”). Far from the critical
point, one typically has a very ordered phase on one side and a greatly
disordered phase on the other side. It is only at the critical point that
one has large correlations among the different parts of a large system, thus
making it possible to have novel emergent properties, and in particular scale-
free phenomena.

In addition to the examples mentioned above, self-organised criticality
has also been proposed to apply to economics, traffic jams, forest fires and
even the brain!
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5.2 Models

How does one test the idea of self-organised criticality? It is quite hopeless
to solve the complete dynamical equations for the relevant systems and
try to see if they do self-organise to the critical state. Rather one makes
highly simplified models to test the idea. If the models display self-organised
criticality and are robust to various changes in detail at the microscopic level,
then one can take that as supporting the plausibility of the proposal.

A simple model of landslides or avalanches is that of a two-dimensional
sand-pile. On a grid, define the local slope at each site (square on the grid)
by an integer Z. The simulation procedure is as follows. First choose a
critical value Zc and populate the grid with a starting configuration with
each site having a random value less than Zc. The updating rules are then:

1. Choose a random site and increase Z by one (add sand).

2. If Z exceeds critical value, reduce Z by four units and redistribute one
unit to each of four neighbours.

3. Check if Z exceeds the critical value at any of the neighbours and
continue redistribution process until the avalanche stops.

4. Count the total number of ”topplings” involved in that avalanche.

5. Go to step (1)

Thus a number of avalanches of different sizes (number of topplings) are
generated. By plotting the number of avalanches against their size for a
large lattice (sand that goes out of the boundary is lost) one finds a power
law over a large range of the parameters. A power law is also obtained for
the distribution of lifetimes of the avalanches.

What is interesting is that adding a single grain (step 1) can initiate an
avalanche of any size, from one that involves only a few grains to one that
involves almost the whole pile. That is, the system shows scale-invariance.
(Notice that at the critical state the output is not proportional to the input,
that is, the system is highly nonlinear and gives rise to ”non-obvious” effects)

After an avalanche has reduced the slope everywhere to below the critical
value, the slow adding of send again brings the pile to another critical state
and more avalanches. That is, the system continually self-organises to the
critical state from which scale-free avalanches occur.
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Although the effect of adding each particular grain is almost impossible
to guess, the statistical distribution of avalanches according to an approx-
imate inverse power law implies that small avalanches are more frequent
than the larger ones. Note that a crucial feature of the models, which is a
reflection of the real systems, is that the external process that drives the sys-
tem (the inflow), occurs much slower than the faster internal reorganization
processes that result in dissipation.

Many other models have been investigated showing self-organised criti-
cality. It has thus been suggested that self-organised criticality might not
only be the reason for the diverse power laws in nature but also the dynami-
cal mechanism behind fractal geometry and one-over-f temporal phenomena
(see chapter 2).

5.3 Experiments

Do any real systems behave like the simple computer model above? Al-
though many natural complex phenomena seem to show power laws, the
computer models are such extreme caricatures of the physical situations
that, though they show SOC, it is unclear whether SOC would occur in real
systems similarly tested. That is, one would like to perform controlled ex-
periments on real dynamical systems to test the idea that they are attracted
to a critical state.

Some initial experiments with real sandpiles showed power-law behaviour
but others did not. It was soon realized that the reason was probably because
real sand is not like the computer particles: Real sand particles are difficult
to stop once they start rolling, so that large avalanches are the norm and the
dynamics is dominated by individual motion of grains over long distances.
By contrast the computer model in the last section implicitly assumed ideal
particles of low inertia (so that little kinetic energy was accumulated as it
rolled) with power laws resulting from collective dynamics.

Thus one is led to design an experiment with particles that do not readily
roll or slip over one another. Long-grained rice was used in an experiment
performed at the Univeristy of Oslo as it has low inertia and its large-aspect
ratio ensured that it did not roll easily. The results of the experiment did
indeed show power laws.

The moral of this is that while SOC is indeed a physical phenomena,
and not just an artifact of simple computer models, it might not necessarily
be an automatic state of all complex systems.
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5.4 Life

As we have seen above, while the approach to the critical state can take a
long time, once the system achieves crticality small perturbations can trigger
avalanches of all sizes. That is, long periods of ”quiet” can be interrupted
by large events. Interestingly, prior to the idea of SOC, the paleontologists
Gould and Eldredge had proposed the idea of ”punctuated equilibrium” to
describe how evolution seemed to occur: Long periods of stasis punctuated
by extinction and evolution events of all sizes. Clearly the independently
proposed idea of SOC is similar and supposedly of applicability to other
complex systems.

Different species compete for resources, forming a large and complex
evolving system. Thus it seems possible that the SOC scenario is realized
for evolution. Indeed the extinction rate for the last 500 million years, from
data collected by Sepkoski, does seem to follow a power law. What is more,
such power law behaviour is also seen in various computer simulations of
evolution, such as Ray’s ”Tierra” model and the simple Bak-Sneppen model.

The Bak-Sneppen model consists of a one dimensional cellular automa-
ton with N species placed on a circle with nearest neighbour interactions.
In this model, evolution is approximated to act at the level of a species
rather than at the level of the individual; thus each species is represented
by a single fitness level 0 < f < 1. At each discrete time step, the species
with the lowest fitness level is made extinct and is replaced by a new species
with a randomly assigned fitness. In addition, the two neighbouring species
are also replaced by new species with randomly assigned fitness values. The
frequency power spectrum of the changes experienced by any given species
in time is found to follow a power law.

An interesting feature of the Bak-Sneppen model is evolution by the
mechanism of ”elimination of the least fit” rather than the popular folklore
of ”survival of the fittest”. This extremal dynamics whereby the weakest
link in a complex network is removed, or breaks down, is probably a realistic
modelling of most natural phenomena.

Indeed, Chialvo and Bak [3] have used extremal dynamics in their model
of a brain that learns from mistakes. In their neural network model, when-
ever mistakes are made, all the synapses that contributed to that decision
are punished. This is in contrast to usual Hebbian rules where neurons that
perform well are strengthened. Chiavlo and Bak show that their model is
able to achieve quick learing of new patterns because their network is closer
to a ”critical state” rather than the sub-critical (highly stable) states of
traditional models.
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5.5 War and Peace

L.F. Richardson’s pacifist leanings motivated him to search for the dynamics
and reasons for wars. We have already mentioned the Richardson model of
the arms race earlier. Richardson also found that the statistical distribution
relating the number of wars to a given intensity, defined as the number
of battle dead, followed a power-law. Richardson considered 82 conflicts
between 1820 and 1929, and the power-law trend has been confirmed by
Levy who investigated 119 wars between 1495 to 1973.

Although Richardson hoped that his mathematical studies of deadly con-
flicts would lead to a way of reducing aggression, he apparently came to the
conclusion that war was an intrinsic feature of mankind.

In [8] the authors argue that the outbreaks of war are analgous to the
”avalanches” of all sizes that occur in a complex system that continually
self-organises to a critical state.

If indeed world order behaves as a self-organsied critical system, rel-
atively unaffected in the long term by efforts to moderate and change be-
haviour, then the conclusion appears pessimistic for the human species. Will
humans ever learn from the past or are we doomed to repeat the mistakes
of the past? Will the human species be the first to annihilate itself ? (see
the exercises).

5.6 Zipf’s Law

In 1932 George Zipf published an empirical rule describing a statistical reg-
ularity in the distribution of words used in any large text.

Let us rank (r) words in a given text according to the frequency (f) of
their occurence. So, the most frequently occuring word would be given the
rank r = 1, the next most frequently occuring word, r = 2 and so on. Zipf’s
law states that

f(r) ∼ r−α (5.2)

with α ∼ 1. This power law has been tested over a large volume of literature
and also different languages and is found to be accurate for words whose
rank is not too low or too high! [10]. It has been argued [11] that for larger
collection of texts, there are significant deviations from a single power law
and that at large ranks there is a transition to a second power law regime.

It is still unclear as to how one may explain the law within a model of
human behaviour, or as to how one may use the generalised law to charac-
terise and differentiate human writing from other froms of text. However it
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has ben argued [12] that the distribution of a word in text can be used to
distinguish whether it is a noun or verb!

Zipf also noted that a similar power law applied to the sizes of cities.
That is, if the largest city in a country was assigned the rank r = 1, the
second largest r = 2, then a power law as above is found. This has been
found to be true for many countries but not for those with central plan-
ning. Thus one can hope that the explanation of the power-law of city size
distribution can be found in the self-organising properties of a society. In
reference [13] the authors consider a model of city formation and find that
if the individuals in the model interact pairwise then Zipf’s law emerges for
larger cities. Other models have also been considered as discussed in that
reference.

5.7 Summary

Self-organised criticality combines the ideas of self-organisation in dissipa-
tive structures with those of critical phenomena in equilibrium second-order
phase transitions, in an attempt to explain the frequent appearance of scale-
free statistical laws that summarize events in many complex systems.

It has been suggested that SOC might be the mechanism behind the
Gaia hypothesis of Lovelock, where the earth is treated as a single organism
far from equilibrium. More ambitiously there is an attempt by Smolin to
explain the complexity of the universe also in this approach.

As yet, a comprehensive analytical understanding of SOC, comparable to
that of critical phenomena in equilibrium second-order phase transitions, is
lacking but some work has been done (see, for example, Ref.[2] and references
therein).

5.8 Exercises

1. Try the sandpile applet at Ref.[7], varying the parameters and the
conditions, and compare what you see with what has been described
above.

2. (a) Explain where dissipation occurs in the sand-pile model.
(b) Explain why the sand must be added slowly to the sandpile. What
would happen otherwise ?
(c) In actual simulations, the straight line fit on a log-log plot does
not hold for very large avalanche sizes. Explain why.
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3. Read the article [3] and discuss the applications of the self-organised
criticality concept.

4. Read the article [8].
(a) What evidence is there that forest fires are an example of a self-
organised critical system?
(b) What similarities are there between forest fires and wars ?
(c) What in your opinion is the best way to prevent conflicts from
getting very large and destructive ?
(d) Can you justify your answer in (c) in the face of claims of self-
organised criticality of the system ?
(e) Check out Ref.[9] and others similar in spirit.

5. Check out the websites below of Zipf’s law.
(a) Find other situations where Zipf’s law applies.
(b) Discuss possible human factors that could be the drving force be-
hind the laws.
(c) Is Zips’s law an example of self-organised criticality ?
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